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Abstract

Parallel tractor extension
and metrics of split G2 holonomy

Travis Willse

Chair of the Supervisory Committee:

Professor C. Robin Graham

Department of Mathematics

Nurowski showed that a maximally nonintegrable 2-plane field on a 5-manifold induces

a natural conformal structure of signature (2, 3) on that manifold. We show that in the

real-analytic case, applying the Fefferman-Graham ambient construction to the conformal

structures produced this way on oriented manifolds always yields metrics with pseudo-

Riemannian holonomy contained in the split real form G2 of the exceptional Lie group GC
2 .

We furthermore show that such metrics have holonomy equal to G2 generically, in the sense

that if the holonomy of such a metric is a proper subgroup of G2, then the 7-jet of the

underlying 2-plane field at any arbitrary point must be contained in some proper subvariety

of the 7-jet space there. This construction hence yields an infinite-dimensional family of

metrics with holonomy equal to G2. Both the containment and the genericity statements

generalize results of Leistner and Nurowski.

To prove the containment, we prove the general result that any parallel tractor tensor

on an n-dimensional, general-signature conformal structure, n ≥ 3, admits an extension

to a tensor on the ambient space parallel in a weak sense: If n is odd, there is always an

extension to an tensor on the ambient space parallel to infinite order, and if n is even there

is an extension parallel to order 1
2n− 1. In particular, if n is odd and the underlying data

is real-analytic, then there is a bona fide parallel extension for any real-analytic ambient

metric. Hammerl and Sagerschnig produced for any 2-plane field on an oriented 5-manifold





a parallel tractor 3-form suitably compatible with the tractor metric, so the extension result

produces a parallel 3-form on the ambient manifold compatible with the ambient metric,

the existence of which is equivalent to the containment of holonomy in G2 < SO(3, 4).

We also investigate parallel extension to infinite order when n is even, in which case

existence of such extensions is generally obstructed, and we show that the parallel extension

result yields a family of necessary integrability conditions for parallel tractor tensors of any

type.
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0.1 Introduction

In his celebrated but difficult 1910 “five variables” paper [Car10], Cartan studied the geom-

etry of 2-plane fields on 5-manifolds satisfying a maximal nonintegrability condition called

genericity and solved the associated equivalence problem. This investigation included the

most involved application of his equivalence method by that time, and it revealed a striking

connection between these structures and the exceptional complex Lie algebra gC2 . In fact,

earlier Cartan and Engel simultaneously realized gC2 as the Lie algebra comprising the vec-

tor fields whose flows preserve a particular (complex) 2-plane field on C5 [Car93, Eng93].

Taking an appropriate real slice analogously yields a (real) 2-plane field on R5 preserved

exactly by vector fields constituting a Lie algebra isomorphic to the split real form g2 of gC2 .

In the real setting, Cartan’s solution to the above equivalence problem encodes a 2-plane

field on a (real) 5-manifold M in a P -principal bundle E → M together with a Cartan

connection ω ∈ Γ(T ∗E ⊗ g2), and the pair (E,ω) is unique up to equivalence. Here, P is a

certain group realizing a certain parabolic subalgebra p < g2, and in modern language, one

calls the pair (E,ω) a parabolic geometry of type (g2, P ).

The group GC
2 realizing gC2 and its real forms Gc

2 (the compact form) and G2 (the

split form) occur naturally in other fundamental settings, too. In 1955, Berger produced

a list that contained all possible irreducibly acting holonomy groups of simply connected

pseudo-Riemannian manifolds that are not locally symmetric [Ber55]. Later investigations

shortened this list, showing that some of the groups Berger included only occurred for

symmetric spaces (Theorem 1.6.4 here records this shortened list). All of GC
2 , Gc

2, and G2

are on the list, and the latter two are the only groups on Berger’s List that can occur in odd

dimension other than the full group O(p, q)—in both cases, only in 7 dimensions. It remained

unknown whether all of the groups on the list actually occurred as the holonomy of some

metric until 1987, when Bryant resolved positively the outstanding cases [Bry87, Section 5],

including all three of these forms of G2.

After this construction, metrics of holonomy Gc
2 were studied intensively, including in

the physics literature, because of applications to string theory and supersymmetry [Gub],

and Joyce used technically demanding analytic methods to produce the first examples of
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compact Riemannian manifolds with that holonomy group. Metrics of holonomy equal to

the split form G2 received less attention.

Nurowski observed that, remarkably, any generic 2-plane field D on a 5-manifold M

induces a canonical signature-(2, 3) conformal structure cD on M [Nur05]: Roughly, one

exploits the natural embedding G2 ↪→ SO(3, 4) to extend the Cartan connection associated

to D equivariantly to a normal conformal connection. We call any conformal structure that

arises via this construction a Nurowski conformal structure. Following Cartan, Bryant

and Hsu gave a proof that the plane fields D admit a local quasi-normal form [BH93]:

There always exist local coordinates (x, y, p, q, z) on M in which (the restriction of) D is

span{∂q, ∂x + p∂y + q∂p + F∂z}; moreover, for any smooth function F on an open subset of

R5 for which Fqq is nonvanishing, the corresponding 2-plane field DF so defined is generic.

Nurowski’s construction is totally explicit in the sense that he gives a (formidable) formula

(A.1) for a representative of the conformal structure induced by the plane field associated to

such a function F . With Nurowski’s construction in hand, one can ply the well-developed

theory of conformal geometry to investigate the geometry of generic 2-plane fields on 5-

manifolds.

Fefferman and Graham showed that any conformal structure c can be canonically en-

coded in an essentially unique ambient metric [FG]. First, the metric bundle G → M , the

principal R+-bundle whose sections are representative metrics of the conformal structure

c, enjoys a tautological, degenerate, symmetric bilinear form g. One then constructs a

signature-(p + 1, q + 1) metric g̃ on some neighborhood M̃ ⊆ G × R of G × {0} (which we

identify with G itself) that pulls back to g via the inclusion G ↪→ M̃ . Requiring that g̃ be

homogeneous and Ricci-flat is enough to guarantee weak notions of both uniqueness and

existence of such a metric: If n is odd, then there is an ambient metric that is Ricci-flat

to infinite order, and any two such ambient metrics agree to that order and up to a diffeo-

morphism that restricts to the identity on G. The same holds for even n, except that both

existence and uniqueness fail at order n/2.

In 2009, Leistner and Nurowski applied the ambient construction to the conformal struc-

tures cD induced by real-analytic plane fields D [LN10]. (For such plane fields, one may

choose the ambient metric of cD to be real-analytic, too; such a metric is Ricci-flat and is
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unique up to extension and to diffeomorphisms that restrict to the identity on G.) Specif-

ically, they restricted attention to real-analytic 2-plane fields defined via the quasi-normal

form by the polynomial functions

F [a, b](x, y, p, q, z) = q2 + a0 + a1p+ a2p
2 + a3p

3 + a4p
4 + a5p

5 + a6p
6 + bz (1)

and showed by explicitly constructing appropriate parallel objects that the (real-analytic)

ambient metrics of the corresponding conformal structures have holonomy contained in

G2. They also devise specialized technical criteria (given here in Lemma 1.6.15) that a

general 2-plane field D on a 5-manifold must satisfy if the ambient metric of the induced

Nurowski conformal structure has holonomy strictly contained in G2. Finally, they use these

conditions to analyze the plane fields defined by the functions F [a, b] by computing explicitly

tensorial data associated to representative metrics of the induced conformal structures and

show that, except for (a0, . . . , a6, b) in an explicit, proper subvariety of R8, those ambient

metrics have holonomy equal to G2.

In this dissertation, we extend these results to all generic 2-plane fields on 5-manifolds

(equivalently, all Nurowski conformal structures). The following theorem, the first major

application in this work, appears later as Theorem 3.1.2.

Theorem. Suppose D is a real-analytic, generic 2-plane field an orientable 5-manifold, let

cD be the Nurowski conformal structure it naturally induces, and let g̃D be a real-analytic

ambient metric of cD. Then, (possibly replacing g̃D with its restriction to some dilation-

invariant open subset of M̃ containing G) Hol(g̃D) ≤ G2.

We apply a covering space argument to produce an analogous result for nonorientable

manifolds.

After establishing this containment, we convert Leistner and Nurowski’s technical criteria

into pointwise polynomial conditions on a high-order jet of D (or more precisely, invoking

the quasi-normal form, of F ) that must hold if the holonomy of the ambient metric is a

proper subgroup of G2, and we show that the criterion is only satisfied on (a subset of)

a proper subvariety of the appropriate jet space at that point. This yields this following

genericity result, given here as Theorem 3.1.7. It roughly says that in the space of real-
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analytic, generic 2-plane fields D on oriented 5-manifolds, those whose Nurowski conformal

structures have ambient holonomy equal to G2 are dense.

Theorem. There is a dense subset S ⊂ J7
0 with the following property: If F (x, y, p, q, z) is

a real-analytic function whose 7-jet j7
0F lies in S (and for which Fqq is nonvanishing) and

g̃F is a real-analytic ambient metric of the Nurowski conformal structure induced by DF ,

then Hol(g̃F ) = G2.

In general, producing metrics with holonomy G2 is difficult; this theorem shows that

generic 2-plane fields on orientable 5-manifolds furnish an infinite-dimensional family of

examples of such metrics. Moreover, the polynomial conditions exploited in the proof are

practical in the sense that they can be tractably exploited to construct large families of

metrics with holonomy G2.

We prove the holonomy containment result using tractor geometry, which essentially

captures the zeroth-order information of the ambient construction. Given a signature-(p, q)

conformal structure c on an n-manifoldM , one can form the tractor bundle T →M , which

we define as the canonical rank-(n+2) vector bundle whose sections are the sections of TM̃ |G

homogeneous of degree −1 with respect to the natural R+-action on that space [ČG03].

Then the restriction of any ambient metric induces a natural (fiber) tractor metric gT on

T and a tractor connection ∇T . (These objects are independent of the choice of ambient

metric.) This tractor connection is equivalent to the normal conformal connection of c,

whose central role in conformal geometry is analogous to that of the Levi-Civita connection

in pseudo-Riemannian geometry.

Just as for pseudo-Riemannian manifolds vis-à-vis the Levi-Civita connection, some ge-

ometric structures on conformal manifolds can be described by objects parallel with respect

to the tractor connection. For example, nonzero parallel sections of the tractor bundle T of

a conformal structure (M, c) (equivalently, the dual cotractor bundle, T ∗, which we may

identify with T via gT ) correspond to the so-called almost Einstein scales of the conformal

structure. This notion modestly generalizes the notion of Einstein scales of a conformal

structure, which by definition are in bijective correspondence with the Einstein representa-

tives of c. (In fact, the existence of an [almost] Einstein representative of a given conformal
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structure is equivalent to the existence of a global solution to a certain second-order partial

differential equation on (M, g), where g ∈ c is any representative metric; then, one can char-

acterize the tractor bundle as the subbundle of the 2-jet bundle over M defined pointwise

by that equation [BEG94].) Extending attention to parallel sections of tractor tensor

bundles, that is, subbundles of tensor powers of T ∗ (possibly with some indices raised),

yields other structures. Hammerl and Sagerschnig showed [HS09] the fact, recorded here as

Theorem 3.1.1, that a signature-(2, 3) conformal structure on an orientable manifold admits

a parallel section of Λ3T ∗ suitably compatible with the tractor metric (and necessarily of

so-called split algebraic type) iff it is induced by a generic 2-plane field on a 5-manifold,

that is, iff it is a Nurowski conformal structure.

One can realize G2 as the stabilizer of a 3-form of split algebraic type on a 7-dimensional

real vector space, so to show that the holonomy of a metric is contained in G2, it suffices to

show that it admits a parallel 3-form of that type. We have realized the tractor bundle as a

restriction of the ambient bundle, so to show that ambient metrics of Nurowski conformal

structures always have holonomy contained in G2, it suffices to show that the parallel

sections of Λ3T ∗ produced by Hammerl and Sagerschnig extend to parallel 3-forms on the

ambient manifold.

This extension problem led to the development of a much more general result, Theorem

2.1.2, which applies to all conformal structures of dimension n ≥ 3. It guarantees that any

parallel section of a tractor tensor bundle extends to a section of the corresponding bundle

over the ambient space that is parallel at least to a certain explicit order; as for the ambient

metric itself, the parity of the dimension plays a critical role. In general, call a tensor χ̃ on

the ambient manifold an ambient extension of a tractor tensor χ if χ̃|G= χ and if χ̃ is

homogeneous with respect to the natural dilations of the ambient bundle.

Theorem (Parallel Tractor Extension Theorem). Let (M, c) be a conformal manifold of

dimension n ≥ 3, and let g̃ be an ambient metric for c.

• If n is odd, any parallel tractor tensor χ admits an ambient extension χ̃ satisfying

∇̃χ̃ = O(ρ∞).
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• If n is even, any parallel tractor tensor χ admits an ambient extension χ̃ satisfying

∇̃χ̃ = O(ρn/2−1).

Gover proved this previously for the special case of rank-1 tensors on odd-dimensional

manifolds [Gov10].

This theorem specializes in the case of odd n and real-analytic c to the following, The-

orem 2.1.3. (In particular, these hypotheses apply to the Nurowski conformal structures

induced by real-analytic plane fields D.)

Theorem (Parallel Tractor Extension Theorem: odd, real-analytic case). Let (M, c) be a

real-analytic conformal manifold of odd dimension, and let (M̃, g̃) be a real-analytic ambient

manifold for c. Any parallel tractor tensor χ admits a unique and real-analytic parallel

ambient extension χ̃ to an open neighborhood of G in M̃ .

Chapter 1 comprises a detailed review of background material. Section 1.1 gives defi-

nitions and essential results for general Cartan and parabolic geometries and devotes some

special attention to the Cartan curvature of (normal) conformal geometry. Section 1.2 recalls

some basic facts about pseudo-Riemannian geometry and conformal geometry and reviews

the standard metric bundle of a conformal structure, conformally weighted vector bundles,

and related constructions. It then presents the Fefferman-Graham ambient construction for

a conformal structure, and in particular recalls several facts about the curvature of an ambi-

ent metric. Section 1.3 constructs the tractor bundle T of a conformal structure c from the

ambient metric and develops the splitting of T induced by a choice of representative metric

of c, which will be used extensively, and then translates several constructions into the dual

language of cotractors, which for convenience will be predominantly used thenceforth. It

then recalls briefly the classical definition of the tractor bundle in terms of the conformally

Einstein condition and shows that the two formulations agree, and also extends some of

the constructions of the preceding sections to more general tractor tensor bundles. Section

1.4 constructs the groups G2 and P and produces explicit representations of both of their

Lie algebras using the nonassociative algebra of split octonions, and it derives some of their

essential properties. Using the intrinsic geometry of that algebra, it describes explicitly the

model of the geometry of generic 2-plane fields on (oriented) 5-manifolds, or equivalently,
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via the Čap-Schichl-Tanaka Theorem (recorded here as Theorem 1.1.20), parabolic geome-

tries of type (g2, P ) satisfying some normalization criteria. Section 1.5 constructs several

objects naturally induced by a generic 2-plane field on a 5-manifold and describes the local

quasi-normal form for those fields that arises from ordinary differential equations of form

z′ = F (x, y, y′, y′′, z), which will be essential in the proof of genericity of G2 holonomy for

the induced ambient metrics. It then describes Nurowski’s construction of a canonical con-

formal structure from such a plane field D in terms of parabolic geometry, and it constructs

the fundamental curvature tensor for the geometry of those fields, which can be regarded as

a section A ∈ Γ(S4D∗), in terms of the Weyl curvature of the induced conformal structure.

Section 1.6 defines and collects some key results about holonomy, including the local de

Rham decomposition of a metric into a product of a flat metric and metrics with indecom-

posably acting holonomy, as well as Berger’s List. It also collects several results special to

holonomy contained in G2, including the technical lemma devised by Leistner and Nurowski

in their construction of metrics with holonomy equal to G2, describes those metrics, and

sketches a proof of that equality.

Chapter 2 presents the Parallel Tractor Extension Theorem, which describes the exis-

tence of parallel ambient extensions of parallel tractors on a general conformal manifold.

Any Einstein representative of a conformal structure induces an canonical, bona fide Ricci-

flat ambient metric, and in this setting any parallel tractor tensor admits a parallel extension

for that metric (irrespective of real-analyticity and parity of dimension). Moreover, because

the canonical metric is explicit in this case, we can compute any such extension explic-

itly. The extension of the parallel cotractor associated to the Einstein representative itself

extends to a 1-form parallel with respect to the ambient metric, necessarily reducing the

holonomy of the ambient metric to a proper subgroup of O(p+ 1, q + 1). Section 2.2 inves-

tigates the case of even n, in which the existence of parallel extensions is not guaranteed

beyond a certain critical order, and produces explicit conditions under which parallel tractor

tensors of certain types admit extensions parallel beyond that order for at most one choice

of ambient metric for the underlying conformal structure.

Chapter 3 describes some applications of the Parallel Tractor Extension Theorem. Sec-

tion 3.1 shows that the holonomy of the real-analytic ambient metric of the conformal
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structure induced by a real-analytic 2-plane field D on an oriented 5-manifold is contained

in G2. It then shows, in the sense described above, that equality holds generically (Theo-

rem 3.1.7) by producing the mentioned polynomial conditions on the fundamental curvature

tensor A of the plane field and the Cotton and Weyl tensors of the induced conformal struc-

ture cD. It describes, too, additional structure enjoyed by such an ambient metric in the

special case in which cD is Einstein. Finally, Section 3.2 returns to the setting of general

conformal structures and uses the extension theorem to produce a large family of necessary

integrability conditions that a parallel tractor tensor of a given arbitrary type must satisfy.

Finally, Section 3.3 suggests some possible directions for further extensions of the results in

this work from the point of view of producing metrics of special holonomy.

0.1.1 Notation

All objects in hypotheses are assumed to be smooth unless stated otherwise (in particular,

the loops that occur in the definitions of various notions of holonomy are assumed merely to

be piecewise-smooth), and all manifolds are assumed to be connected and have dimension

n ≥ 3. For a manifold M we will sometimes denote spaces of sections of bundles over M as

follows:

E := C∞(M)

Ea := Γ(TM)

E(a1···ak) := Γ(SkT ∗M)

E[a1···ak] := Γ(ΛkT ∗M).

In particular, we will sometimes denote Γ(T ∗M) by Ea. We extend this notation throughout

this work. The notation A ≤ B indicates that A is a subgroup of B and the notation a ≤ b

that a is a Lie subalgebra of b. The symbols <, >, and ≥ are defined analogously.
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Chapter 1

BACKGROUND

1.1 Parabolic geometry

A Cartan geometry is a manifold endowed with data realizing it as a curved version of a

homogeneous space, generalizing the realization of Riemannian manifolds as curved versions

of Euclidean space. Roughly speaking, one attaches to each point of the manifold a copy

of the homogeneous space, and the additional data specifies how to connect the copies

attached to different points. In the special case that the homogeneous space is the quotient

of a semisimple Lie group by a parabolic subgroup, a Cartan geometry admits some special

algebraic features, and the Cartan geometry is called a parabolic geometry. In this section,

we largely follow [Čap06], [ČS09b], and [Sha97].

1.1.1 Klein geometries

Any Klein geometry, which is essentially a homogeneous space, defines a type of Cartan

geometry, and any Cartan geometry of that type may be regarded locally as a deformation

of that Klein geometry.

Definition 1.1.1. A Klein geometry (homogeneous model) is a pair (G,H) where G

is a Lie group and H ≤ G is a closed (hence Lie) subgroup such that the quotient manifold

G/H is connected. The group G is the principal group and the quotient manifold G/H

is the space of the geometry.

By construction, the space of a Klein geometry (G,H) is a homogeneous space: G acts

transitively and smoothly on G/H on the left by a · (gH) = (ag)H. We may equivalently

regard a Klein geometry as a smooth right principal H-bundle G→ G/H, where the bundle

projection is the natural quotient map G→ G/H.

Two Klein geometries (G,H) and (G′, H ′) are geometrically isomorphic if there is a
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Lie group isomorphism ϕ : G→ G′ such that ϕ(H) = H ′; by construction, ϕ is a bundle map

between the principal bundles of the two Klein geometries defined as in the last paragraph.

To specify a Klein geometry, we may also give a principal group G and a connected space

X on which G acts transitively, in which case H is the stabilizer of an (arbitrary) point in

X. Different choices of points yield conjugate stabilizers H and hence, taking ϕ to be an

appropriate conjugation, geometrically isomorphic Klein geometries.

The total space G of the bundle of a Klein geometry (G,H) admits a canonical g-valued

1-form (where g is the Lie algebra of G): By pushing forward by left multiplication and

applying the canonical identification TidG↔ g, the form identifies with g the tangent space

to each point of the group. This in turn canonically identifies the tangent spaces at all points

of G, and this form serves as a model for the data in a Cartan geometry that specifies how

tangent spaces are connected.

Definition 1.1.2. The Maurer-Cartan form of a Lie groupG is the form ωMC ∈ Γ(T ∗G⊗

g) defined for X ∈ TgG by

ωMC(X) := dLg−1X. (1.1)

The Maurer-Cartan form induces a canonical trivialization TG→ G× g via the identi-

fication

X → (πTG(X), ωMC(X)), (1.2)

where πTG : TG→ G is the bundle projection.

1.1.2 Cartan geometries

Cartan geometries are curved versions of Klein geometries: Any Cartan geometry is in-

finitesimally equivalent at each point to the Klein geometry (G,H) on which it is modeled,

but may be locally inequivalent (that is, curved); this curvature, which is encoded as a

tensor that generalizes the Riemannian curvature, is a consequence of how nearby tangent

spaces in the geometry are identified, and this is in turn specified by the Cartan connection

of the geometry. By definition, Cartan connections generalize the Maurer-Cartan form on

the total space of the bundle G→ G/H.
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Definition 1.1.3. Given a Lie algebra g and a Lie group H with Lie algebra h ≤ g, a

Cartan connection of type (g, H) on a right principal H-bundle π : E →M is a g-valued

1-form ω : TE → g satisfying the following axioms:

1. (Ad-invariance) For all h ∈ H,

R∗hω = Ad(h−1) ◦ ω,

where Rh is the right action map (for h), and Ad : H → GL(g) is a fixed representation

extending Adh : H → GL(h)

2. (Reproduction of the fundamental vector fields) For all Y ∈ h ∼= TidH, ω(ζY ) = Y ,

where ζY ∈ Γ(TE) is the fundamental vector field corresponding to Y : Let h :

R→ H be the unique 1-parameter subgroup with initial tangent vector Y ; we define

ζY :=
d

dt

∣∣∣∣
0

Rh(t).

3. (Absolute parallelism) For all e ∈ E, ω restricts to an isomorphism

ω|e: TeE → g.

The absolute parallelism condition ensures that the Cartan connection ω identifies the

tangent space at each point of the total space E with g and thus the tangent spaces at

different points with one another, just as the Maurer-Cartan form on G identifies the tangent

spaces of that group, and hence defines a natural trivialization TE → E × g by

X 7→ (πTE(X), ω(X)), (1.3)

where πTE : TE → E is the bundle projection.

A Cartan geometry is all of this structure taken together. (Note that, unlike in the

definition of a Klein geometry, the definition of a Cartan geometry refers only to the Lie

algebra g of the larger group G and so disregards the global topology of that group.)

Definition 1.1.4. Given a Lie algebra g and a Lie group H with Lie algebra h ≤ g, a

Cartan geometry of type (g, H) is a pair (E →M,ω), where E →M is a right principal

H-bundle, and ω is Cartan connection of type (g, H) on E → M . A Cartan geometry of
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type (g, H) is also called a (g, H)-geometry or a (g, H)-structure on the base manifold

M .

One may define the category of Cartan geometries of type (g, H) by declaring a morphism

between two such geometries, (E → M,ω) and (E′ → M ′, ω′), to be a principal bundle

morphism Φ : E → E′ that respects the Cartan connection in the sense that Φ∗ω′ = ω.

Given any morphism Φ in this category, the absolute parallelism condition in the definition

of Cartan connection forces the tangent map TΦ to be an isomorphism, and so both Φ and

its base map are local diffeomorphisms. The geometries (E →M,ω) and (E′ →M ′, ω′) are

equivalent (that is, isomorphic in this category) if there is a principal bundle morphism Φ

that is a (global) diffeomorphism (or equivalently, if its base map is a global diffeomorphism).

They are instead locally equivalent near x ∈ M and x′ ∈ M ′ if there are neighborhoods

U of x and U ′ of x′ such that (E|U→ U, ω|U ) and (E′U ′ → U ′, ω|U ′) are equivalent.

After the Cartan connection ω, the most important tensorial data associated to a Cartan

geometry (E → M,ω) of type (g, H) is its curvature, K ∈ Γ(Λ2T ∗E ⊗ g), the g-valued

2-form defined by the structural equation

K := dω + ω ∧ ω. (1.4)

Since ω trivializes TE by realizing it isomorphically as E × g, K (in fact, any differential

form on E) is determined by its values on the constant vector fields ω−1(X), X ∈ g.

Thus, we can equivalently describe the curvature by the map κ : E → Λ2g∗ ⊗ g defined by

κ(u)(X,Y ) := K(ω−1(X)(u), ω−1(Y )(u)); (1.5)

applying the invariant formula for the exterior derivative to this definition gives κ(u)(X,Y ) =

[X,Y ]− ω([ω−1(X), ω−1(Y )])(u). If X ∈ h, the constant vector field ω−1(X) is the funda-

mental vector field ζX by definition of the Cartan connection. The equivariance of ω implies

that LζXω = ζXy dω = − ad(X) ◦ ω, and thus for all η ∈ Γ(TE),

K(ω−1(X), η) = dω(ω−1(X), η) + [ω(ω−1(X)), ω(η)]

= − ad(X)(ω(η)) + [X,ω(η)]

= 0.
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Since η is arbitrary and the fundamental vector fields span the vertical bundle, K is hor-

izontal (that is, it is annihilated by any vertical vector field). Thus, by construction, κ

descends through the quotient to a map E → Λ2(g/h)∗ ⊗ g (also denoted κ).

A Cartan geometry is called flat if K (equivalently, κ) is identically zero. A Cartan

geometry is called torsion-free if K takes its values in the subalgebra h, the Lie algebra of

the group H (equivalently, if κ takes its values in Λ2(g/h)∗ ⊗ h). So, a Cartan geometry is

torsion-free iff the image of κ under g→ g/h is trivial.

Example 1.1.5 (Model geometry). The Klein geometry (G,H) endowed with the Maurer-

Cartan form ωMC of G can be regarded as the Cartan geometry

(G → G/H,ωMC) of type (g, H), where g is the Lie algebra of G. If G realizes g, we

call (G→ G/H,ωMC) a model geometry of type (g, H), and its base is called the model

space (of that type); by construction, the model space is determined up to universal cover.

The Maurer-Cartan identity

dωMC + ωMC ∧ ωMC = 0 (1.6)

then simply asserts that the model geometry is flat, so such a geometry is also called a flat

model.

The group G acts transitively on G/H and preserves ωMC , so a model geometry is

locally equivalent to itself near any points gH, g′H (via Lg′g−1). So, if a Cartan geometry

(E → M,ω) of type (g, H) is locally equivalent to the model geometry near x ∈ M and

gH ∈ G/H, then it is locally equivalent near x to the model geometry at every point. We

say that (E → M,ω) is locally flat if for every x ∈ M it is locally equivalent near x to

a model geometry at any (equivalently, every) point; pulling back to the universal cover

of any model space shows that this characterization is independent of the choice of model

geometry. In this sense, we may (locally) regard any other geometry of type (g, H) as a

deformation of the model geometry. One can show that the curvature of a Cartan geometry

vanishes identically if and only if it is locally flat, so we may regard the curvature as an

(again, local) measure of that deviation from the flat model.

Several familiar geometric structures can be realized as (that is, are essentially equivalent

to) Cartan geometries for specific choices of the pair (g, H). The first three examples below
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are discussed thoroughly in [Sha97].

Example 1.1.6 (Riemannian geometry). A torsion-free (ao(n),O(n))-structure contains the

same information as a Riemannian structure, that is, a Riemannian metric, on the base

n-manifold. Here, AO(n) = Rn o O(n) is the group of isometries of Rn and ao(n) is its Lie

algebra. A flat model of the geometry is the space AO(n)/O(n) ∼= Rn endowed with the

standard Euclidean metric.

Example 1.1.7 (Conformal geometry). There is a canonical bijection between

(o(p + 1, q + 1), Ṗ )-geometries satisfying a condition called normality (see the discussion

of this geometry in Example 1.1.21) and conformal structures of signature (p, q), that is,

equivalence classes of signature-(p, q) pseudo-Riemannian metrics on manifolds M , where

two metrics are in the same class iff one is a positive, C∞(M) multiple of the other. Here, Ṗ

is the stabilizer in O(p+ 1, q+ 1) of a null ray in Rp+1,q+1. One flat model of the geometry

is the space of null rays in Rp+1,q+1 endowed with the conformal structure inherited from

the standard pseudo-Riemannian metric on Rp+1,q+1; we may identify this structure with

the product Sp× Sq endowed with the conformal class containing the product gp⊕ (−gq) of

the round metrics gp and gq on Sp and Sq, respectively. (See Example 1.1.21 and Subsection

1.2.4 for further details of parabolic geometry of this type.)

Example 1.1.8 (Projective geometry). One may canonically associate to each normal (sl(n+

1,R), S)-structure a torsion-free projective structure on the base manifold, that is, a

projective equivalence class of torsion-free linear connections on the base, where two

connections are in the same class iff they determine the same unparameterized geodesics.

Here, S is the stabilizer of a point in RPn under the standard action of SL(n + 1,R) on

that space. This association, however, is not a bijection in the way that the analogous

associations are for most other types of parabolic geometries; see the discussion of this

geometry in Example 1.1.22 below. One flat model of the geometry is just RPn endowed

with the standard projective equivalence class (that is, the one containing the Levi-Civita

connection induced on RPn by realizing it as the quotient Sn/Z2 of Sn with the round

metric, where the nonidentity element in Z2 acts antipodally).

Example 1.1.9. One can also realize oriented analogs of Riemannian and conformal struc-
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tures as Cartan geometries. For example, one may identify torsion-free (aso(n), SO(n))-

geometries with Riemannian metrics on oriented manifolds, where aso(n) is the Lie algebra

of the group ASO(n) = Rn o SO(n) of orientation-preserving isometries of Rn; the model

space is ASO(n)/SO(n) ∼= Rn.

For any Lie group G containing H and realizing g, one may canonically extend the

Cartan connection ω to a connection on a principal G-bundle canonically defined in terms

of the given bundle E → M , taking the map Ad to be just Adg : G → G. To do this, one

forms the principal G-bundle E = E ×H G, on which ω extends equivariantly (and hence

uniquely) to a principal connection ω. One may hence define the holonomy of the Cartan

geometry (E → M,ω) to be the principal bundle holonomy of the extended connection ω.

(See Subsection 1.6.2.)

1.1.3 Parabolic geometries

Parabolic geometries are the special class of Cartan geometries (g, P ) for which g is semisim-

ple and the Lie algebra p of P is a parabolic subalgebra of g.

We define parabolic subalgebras, then parabolic subgroups, and finally parabolic ge-

ometries, in terms of gradings and filtrations on g. One can endow semisimple Lie algebras

with gradings (and thus filtrations) that arise from their root decompositions, and so these

gradings and filtrations inherit in suitable ways the compatibility of those decompositions

with the Lie bracket. Then, on a parabolic geometry (E → M,ω), the corresponding Lie

algebra grading induces a filtration on the tangent bundle of the base M via the Cartan

connection ω.

Definition 1.1.10. A |k|-grading of a semisimple Lie algebra g (where k is a positive

integer) is a direct sum decomposition g = g−k ⊕ · · · ⊕ gk such that

1. For all indices i and j, [gi, gj ] ⊆ gi+j (taking gi = {0} for |i| > k).

2. The subalgebra g− := g−k⊕· · ·⊕g−1 is Lie-generated by the summand g−1. (Condition

(i) guarantees that g− is indeed a subalgebra.)
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3. The summands g−k and gk are both nonzero.

Note that any form α (in particular, the curvature κ) that takes its values in a |k|-graded

semisimple Lie algebra (gi) can be decomposed uniquely as a sum

k∑
i=−k

αi (1.7)

of forms αi taking respective values in gi.

Definition 1.1.11. The parabolic subalgebra associated to the |k|-grading (gi) of a

semisimple Lie algebra g is

p := g0 ⊕ · · · ⊕ gk. (1.8)

Condition (i) in Definition 1.1.10 guarantees that a parabolic subalgebra is in fact a

subalgebra. Similarly, the subspace n := g1 ⊕ · · · ⊕ gk induced by the grading is both a

subalgebra of g and a nilpotent ideal of p.

Like any grading of a vector space, a |k|-grading (gi) induces a canonical filtration

g = g−k ⊃ · · · ⊃ gk, (1.9)

where gi = gi ⊕ · · · ⊕ gk. Since the |k|-grading respects the Lie bracket in the sense of

condition (i) of Definition 1.1.10, so does the filtration, that is, [gi, gj ] ⊆ gi+j for all indices

i, j. Note that, by definition, n = g1.

Definition 1.1.12. A parabolic subgroup of a semisimple Lie group G realizing the

|k|-graded Lie algebra g is a subgroup P ≤ G which is contained in

{g ∈ G : (∀i) Ad(g)(gi) ⊆ gi} (1.10)

and contains the connected component of the identity of that group.

Definition 1.1.13. The Levi subgroup of a semisimple Lie group G corresponding to the

|k|-graded Lie algebra g and a choice of parabolic subgroup P ≤ G is

G0 := {g ∈ G : (∀i) Ad(g)(gi) ⊆ gi} ∩ P. (1.11)
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By definition, G0 preserves the |k|-grading (gi) on g whereas P preserves the induced

filtration (gi) (a weaker condition). The subgroup N = exp n (which is contained in P ) is

nilpotent, and one can show that P = G0 oN .

We are now prepared to define a parabolic geometry:

Definition 1.1.14. Given a |k|-graded semisimple Lie algebra g and a parabolic subgroup

P of a Lie group G realizing g, a Cartan geometry of type (g, P ) is called a parabolic

geometry (of type (g, P )).

Via the Cartan connection on a parabolic geometry, the defining |k|-grading induces

filtrations on various bundles over M , including E; we introduce some notation and language

for working with them.

Definition 1.1.15. A filtered manifold is a manifold S endowed with a filtration

TS = T−mS ⊇ · · · ⊇ T−1S.

Such a filtration naturally induces a graded bundle gr(TS) with summands

gri(TS) := T iS/T i+1S

(we set T 0S to be the vector subbundle of TS containing only the zero vector at each point,

and we define T iS = TS for i < −m); let

qi : T iS → gri(TS)

denote the natural quotient maps.

Suppose that a filtered manifold respects the Lie bracket [·, ·] in the sense that, for all

ξ ∈ Γ(T iS) and all η ∈ Γ(T jS), [ξ, η] ∈ Γ(T i+jS), for all indices i, j. Since the filtration

indices are all negative, we have T iS, T jS ⊆ T i+j+1S for all indices i, j, and thus the natural

map Γ(T iS)× Γ(T jS)→ Γ(gri+j(TS)) defined by (ξ, η) 7→ qi+j([ξ, η]) is induced by a tensor

map T iS × T jS → gri+j(TS). By construction, the value of the tensor depends only on the

classes of ξ and η in gri(TS) and grj(TS), respectively, so the map descends to a tensor

map gri(TS)× grj(TS)→ gri+j(TS). These maps together define an antisymmetric tensor

operator

L : gr(TS)× gr(TS)→ gr(TS)
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called the Levi bracket induced by the filtered manifold structure. By construction, the

restriction of L to any point x ∈ S defines a nilpotent, graded Lie algebra structure on

grx(TS) called the symbol algebra of S at x.

Recall that the Cartan connection ω of a parabolic geometry (E →M,ω) of type (g, P )

induces a trivialization TE ∼= E×g (see equation (1.3)). Thus, the filtration (gi) associated

to the parabolic subgroup P induces a filtration

T−kE ⊇ · · · ⊇ T kE

of TE with parts

T iE := ω−1(gi).

Since the adjoint P -action preserves the filtration (T iE) (because it preserves the filtration

gi), it induces a natural identification TM = E ×P (g/p), and the subfiltration T−kE ⊇

· · · ⊇ T−1E induces a natural filtration

T−kM ⊇ · · · ⊇ T−1M.

This filtration then realizes TM as a filtered manifold compatible with the Lie bracket, and

so a parabolic geometry defines a Levi bracket L on the resulting graded bundle gr(TM).

Since the nilpotent subgroup N < P acts freely on E by construction, the quotient

E0 = E/N is a principal bundle over M with structure group P/N = G0. The Cartan

connection ω then induces a bundle map from E0 to the frame bundle of gr(TM), defining

a reduction of the structure group of that bundle to Ad(G0). In particular, the Cartan

connection induces a refined (again, canonical) identification of vector bundles, gri(TM) ∼=

E0 ×G0 gi. Taking these together defines a canonical isomorphism gr(TM) ∼= E0 ×G0 g−,

and each fiber gr(TxM) is a nilpotent graded Lie algebra canonically isomorphic to g−.

Moreover, since the Lie bracket on g, and hence that on g−, is G0-invariant, it induces via

the above identification a (tensorial) map

{·, ·} : gr(TM)× gr(TM)→ gr(TM)

called the algebraic bracket. This bracket is generally distinct from the Levi bracket

induced by the filtration, but the two agree in the cases of principal interest.
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Definition 1.1.16. A parabolic geometry (E →M,ω) is regular if the induced algebraic

and Levi brackets are the same map.

Remark 1.1.17. For a regular parabolic geometry, the agreement of the two brackets induces

at each point x ∈ M an isomorphism (of graded Lie algebras) between the symbol algebra

grx(TM) and g−.

Finally, any parabolic geometry (E → M,ω) of type (g, P ) admits a canonical adjoint

tractor bundle, AM = E ×P g, where P acts via the adjoint action. Since the associated

filtration (gi) is P -invariant, it induces a filtration

A−kM ⊃ · · · ⊃ AkM

of smooth (constant-rank) subbundles, and each fiber is a filtered Lie algebra isomorphic to

(gi). The Cartan connection yields a canonical identification TM ↔ E ×P (g/p) and thus

an identification

TM ↔ AM/A0M

So, the filtration (AiM) induces a filtration TM = T−kM ⊃ · · · ⊃ T 0M = M ×{0} of TM

under the identifications T iM = AiM/A0M , and since AM is a quotient of TE, (T iM)

agrees with the previous filtration so denoted. The curvature function κ may be realized in

a third way, namely, as an AM -valued 2-form on M : Direct computation shows that the

curvature function regarded as a map κ : E → Λ2(g/p)∗⊗g is P -equivariant (with respect to

the adjoint action), so it corresponds to a smooth section of the associated bundle, namely,

Λ2T ∗M ⊗AM .

Remark 1.1.18. One can show that a parabolic geometry is regular iff

κ(T iM,T jM) ⊂ Ai+j+1M .

In particular, a torsion-free geometry is necessarily regular, so regularity may be regarded

as a condition that the torsion of the parabolic geometry not be too severe.

The Killing form on g induces a duality between g/p and n = g1, so the identification

TM ∼= E ×P (g/p) yields an natural isomorphism T ∗M ∼= E ×P n = A1M . So, each
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cotangent space T ∗xM is a nilpotent Lie algebra whose bracket is the restriction of the

algebraic bracket of AM .

A primary reason for studying parabolic geometries is that they realize varied geometric

structures, both familiar and novel, in a common axiomatic framework. One would like to

establish bijective correspondences between (1) parabolic geometries of a particular type and

with a given base manifold and (2) the possible geometric structures of the corresponding

type on that base, but without additional restrictions, parabolic geometries have too much

freedom to admit such identifications. To resolve this disparity, and in particular to produce

the desired bijections for most parabolic geometries, one restricts attention to parabolic

geometries satisfying both the regularity condition above and one other technical condition.

To frame conveniently this second condition, one defines the homology of a parabolic

geometry (E →M,ω) of type (g, P ) induced by the homology of the underlying Lie algebra

g: For each l > 0, define the (tensorial) boundary operator

∂∗ : ΛlT ∗M ⊗AM → Λl−1T ∗M ⊗AM

by

∂∗((α1 ∧ · · · ∧ αl)⊗ s) :=

l∑
i=1

(−1)i(α1 ∧ · · · ∧ α̂i ∧ · · · ∧ αl)⊗ {αi, s}

+
∑
i<j

(−1)i+j({αi, αj} ∧ α1 ∧ · · · ∧ α̂i ∧ · · · ∧ α̂j ∧ · · · ∧ αl)⊗ s, (1.12)

where αr ∈ T ∗M for r = 1, . . . , l, s ∈ AM , and {·, ·} denotes the brackets induced by the

algebraic bracket on both AM and T ∗M ∼= A1M . Computing directly shows that (∂∗)2 = 0

and, restricting to each fiber, the quotients (ker ∂∗)/(im ∂∗) are the pointwise Lie algebra

homologies of T ∗xM with coefficients in AxM , respectively.

Definition 1.1.19. A parabolic geometry (E → M,ω) (or the Cartan connection ω) is

normal if ∂∗κ = 0, regarding κ as an AM -valued 2-form.

The above construction began with a generic regular parabolic geometry (E → M,ω)

of type (g, P ) and produced a particular geometric structure on M : a filtered manifold

whose symbol algebras are all isomorphic to g− together with a reduction E0 → M of the
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graded bundle gr(TM) to the structure group Ad(G0) ≤ Autgr g−; here, Autgr g− denotes

the group of automorphisms of g− that preserve the grading. A fundamental result in the

theory of parabolic geometries is a theorem essentially due to Tanaka, but given here in a

form due to Čap and Schichl, which states that this construction may be inverted and, for

most types of parabolic geometry, uniquely so.

Theorem 1.1.20 (Čap-Schichl-Tanaka). [ČS09b] Let g be a |k|-graded semisimple Lie al-

gebra, (T iM) a filtered manifold such that each symbol algebra is isomorphic to g−, and

E0 → M a reduction of gr(TM) to structure group Ad(G0) ≤ Autgr g−. Then, there is

a regular, normal parabolic geometry (E → M,ω) of type (g, P ) for a suitable parabolic

subgroup P that yields the given data via the construction in this section. Moreover, if

H1(n, g) is concentrated in nonpositive homogeneous degrees, then that parabolic geometry

is unique up to isomorphism. (Here H1(n, g) is the first Lie algebra homology group of n

with coefficients in g.)

When working with a particular type of parabolic geometry, the somewhat abstract

conditions of regularity and normality often reduce to more concrete ones. In particular, if

g is |1|-graded, parabolic geometries of a type (g, P ) are vacuously regular.

Parabolic geometries are numerous and diverse.

Example 1.1.21 (Conformal structures). An (o(p+1, q+1), Ṗ )-structure (see Example 1.1.7)

is normal if the zeroth-graded summand κ0 of its curvature (see equation (1.7)) is tracefree

(equivalently, if it is formally Ricci-flat), that is, if (κ0) k
ki j = 0. Cartan constructed a

bijection between signature-(p, q) conformal structures and what are now called normal

(o(p + 1, q + 1), Ṗ )-structures. See Subsection 1.2.4 for additional discussion of conformal

geometry as parabolic geometry; in particular, it shows that the parabolic subgroup Ṗ

corresponds to a |1|-grading of o(p+ 1, q + 1), and so parabolic geometries of this type are

vacuously regular.

Example 1.1.22 (Projective structures). Any (sl(n+ 1,R), P )-structure (again, cf. Example

1.1.8) yields a torsion-free projective structure. The parabolic P corresponds to a |1|-grading

of sl(n+ 1,R) and so is regular; the homology group H1(n, sl(n+ 1,R)) is not concentrated

in nonpositive homogeneous degrees, though, so the Čap-Schichl-Tanaka Theorem does
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not uniquely determine a corresponding normal (sl(n + 1,R), P )-structure. When n > 1,

however, some other underlying data can be used to make a (unique) canonical choice among

the normal (sl(n+ 1,R), P )-geometries inducing a given torsion-free projective structure.

Remark 1.1.23. Besides projective structures, the only other types (g, P ) of parabolic ge-

ometries with g simple for which H1(n, g) is not concentrated in nonpositive homogeneous

degrees are the so-called contact projective structures, for which g = sp(2n,R) and P has a

certain isomorphism type. Thus, for all other types of geometries with g simple, the Čap-

Schichl-Tanaka Theorem establishes a bijective correspondence between the remaining data

of the hypotheses of that theorem (that is, the associated geometric structure) and normal,

regular parabolic geometries of the corresponding type.

Example 1.1.24 (Generic 2-plane fields on 5-manifolds). This is the example of principal

interest in this work. Let G2 be the (algebra) automorphism group of the split octonions Õ

and P < G2 the stabilizer of a null ray in Im Õ ∼= R3,4 under the induced natural action of

G2 on that vector space. Cartan essentially showed, albeit in different language, that there is

a canonical bijection between regular, normal (g2, P )-structures and oriented 2-plane fields

D on 5-manifolds such that [D, [D,D]] = TM (see Definition 1.5.1, which defines the bracket

[A,B] of two plane fields) [Car10]. The parabolic subgroup P is induced by a |3|-grading of

g2, so the regularity condition is not vacuous for this type of geometry. A model space is

S2× S3, and one flat model is a G2-invariant 2-plane field on this space. One can construct

a nonoriented analogue of this geometry by replacing P instead with the stabilizer P ′ of a

null ray in G2×Z2. See Section 1.4 for explicit constructions of the groups G2 and P , and

Section 1.5 for details of this geometric structure.

Example 1.1.25 (Generic 3-plane fields on 6-manifolds). [Bry06] Bryant showed that there

is a canonical bijection between regular, normal (so(3, 4), Q)-structures and 3-plane fields E

on a 6-manifold that satisfy [E,E] = TM . By construction, SO(3, 4) acts naturally on the

6-dimensional projective subvariety Gr0(3,R3,4) ⊂ Gr(3,R3,4) comprising the null 3-planes

in R3,4; here, Q is the stabilizer of a null 3-plane under this action. The model space is

Gr0(3,R3,4), and one flat model is a nondegenerate, SO(3, 4)-invariant 3-plane field on this

space. This type of geometry is formally similar to the 2-plane type discussed in the previous
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example, and so it admits analogs of many of the results in Section 1.5. See Section 3.3 in

this dissertation for further discussion.

In this dissertation, we will always discuss parabolic geometries of these types in the

context of the corresponding underlying geometries, and so via Theorem 1.1.20 we will

always take them by hypothesis to be normal and regular.

1.2 Conformal and ambient geometry

1.2.1 Young diagrams and irreducible GL(V)- and O(h)-representations

In this section we review a simple diagrammatic system useful for (among numerous ap-

plications) parameterizing the irreducible representations of the general linear and orthog-

onal groups. We mostly follow Fulton and Harris [FH, Subsections 4.1, 15.3, 19.5], who

present the constructions only for vector spaces over C, though they apply unchanged to

vector spaces over any field of characteristic 0. Henceforth, all representations are finite-

dimensional by hypothesis.

For a fixed nonnegative integer r, a partition λ of r is a sequence (r1, . . . , rs) of positive

integers such that
∑

k rk = r and r1 ≥ · · · ≥ rs. (So, the only partition of 0 is the empty

sequence ∅.) We can depict a partition as a Young diagram, a collection of top-justified

columns of boxes with exactly rk boxes in the kth leftmost column. For example, the

partition (3, 1) of 4 corresponds to the Young diagram

.

(Young diagrams are often instead specified by giving instead the number of boxes in each

row rather than in each column. In that setting, the partition (r1, . . . , rs) as specified above

is the called conjugate partition of the corresponding Young diagram.) By convention,

the unique partition ∅ of 0 is assigned the Young diagram with zero boxes, which we denote

•.

A Young tableau is a Young diagram, say, corresponding to the partition λ = (r1, . . . , rs)

of r, together with a bijective assignment, called a filling, of the numbers 1, . . . , r to the
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boxes of the diagram. For example, one filling of the above Young diagram is

1 2
3
4

.

The symmetric group Sr then acts transitively on the set of fillings of the diagram. Fix a

filling and define P ≤ Sr to be the subgroup comprising all the permutations that for each

row preserve the set of numbers assigned to the boxes in that row, and define Q ≤ Sr to be

the subgroup that similarly preserves each column. Let F be a field of characteristic 0, and

in the group algebra FSr, define the elements

aλ :=
∑
g∈P

eg

bλ :=
∑
g∈Q

sgn(g)eg.

For any vector space V over F, Sr acts on
⊗r V by permutation of factors. Suppose that the

row lengths of the diagram are t1 ≥ · · · ≥ tu. By construction, the induced (right) action

of aλ on
⊗r V has image equal to

St1V⊗ · · · ⊗ StuV ⊆
⊗r V,

where the inclusion is given by grouping factors by row, and the action of bλ has image

Λr1V⊗ · · · ⊗ ΛrsV ⊆
⊗r V,

where the inclusion is given by grouping factors by column. We define the Young sym-

metrizer of the tableau to be the group element

cλ := aλ · bλ ∈ FSr.

Finally, we let Sλ denote the corresponding Schur functor, which sends V to the image of

cλ ∈ End(
⊗r V),

SλV := (
⊗r V) .cλ.

By construction, this image is a GL(V)-subrepresentation of
⊗r V, and any tensor in this

space has the symmetries preserved by cλ. Different choices of Young tableaux with the

same underlying Young diagram yield different groups P and Q and different elements a, b,

and c of End(
⊗r V), but give isomorphic representations SλV.
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Theorem 1.2.1. Suppose V is a vector space of dimension n over a field of characteristic

0. Then, the map λ 7→ SλV defines a bijective correspondence between the partitions for

which r1 ≤ n (equivalently, the Young diagrams with at most n rows) and (isomorphism

classes of) the irreducible representations of GL(V).

In particular, we may indicate any irreducible representation of GL(V) (up to isomor-

phism) just by giving the corresponding Young diagram. By construction,

SλV ⊆ SdnΛnV⊗ · · · ⊗ Sd2Λ2V⊗ Sd1V ⊆ Λr1V⊗ · · · ⊗ ΛrsV,

where dk is the number of times the positive integer k occurs in the partition λ.

Now, let V be as above and let h ∈ S2V∗ be a nondegenerate, symmetric bilinear form.

In general, the restriction of an irreducible GL(V)-representation to the orthogonal group

O(h) of h is no longer irreducible, so we describe how to modify the above constructions to

yield an analogous parameterization of the irreducible representations of O(h).

Fix r; for each pair (p, q) of integers such that 1 ≤ p < q ≤ r, define the linear contrac-

tion map

Φ(p,q) :
⊗r V→

⊗r−2 V

by

Φ(p,q) : v1 ⊗ · · · ⊗ vr 7→ h(vp, vq)v1 ⊗ · · · ⊗ vp−1 ⊗ vp+1 · · · ⊗ vq−1 ⊗ vq+1 ⊗ · · · ⊗ vr,

and denote the common kernel of these maps by

V[r] :=
⋂

1≤p<q≤r
ker Φ(p,q).

For any partition (equivalently, Young diagram), the intersection

S[λ]V := V[r] ∩ SλV

is a representation of O(h), and we call any tensor in this space (totally) tracefree.

Theorem 1.2.2. Suppose V is a vector space of dimension n over a field of characteristic

0. The map λ 7→ S[λ]V defines a bijective correspondence between the partitions for which

r1 + r2 ≤ n (equivalently, the Young diagrams whose first and second columns together

contain at most n boxes) and the irreducible representations of O(h).
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We indicate the representation S[λ]V of O(h) by giving the corresponding Young diagram

and marking it with a subscript 0. In the context of O(h)-representations, a Young diagram

without the subscript 0 just indicates the restriction of the GL(V)-representation SλV to

O(h), which again need not be irreducible.

Example 1.2.3. The zero-box Young diagram • (equivalently, the empty partition ∅) corre-

sponds to the trivial representation.

Example 1.2.4. The O(h)-representation · · ·︸ ︷︷ ︸
r

0 (equivalently, the representation induced

by the partition (1, . . . , 1) of r) is just the space Sr0V of tracefree, symmetric r-tensors.

Example 1.2.5. The O(h)-representation r


.
.
.

(equivalently, the representation induced

by the partition (r) of r) is just the space ΛrV of totally antisymmetric r-tensors. Now,

S[(r)]V = S(r)V, so these representations are irreducible.

Henceforth, we always take V = (Rm)∗ for appropriate m.

1.2.2 Geometric preliminaries

Given a pseudo-Riemannian metric g of signature (p, q), the Levi-Civita connection ∇ of g

is the unique torsion-free connection preserving the metric, that is, satisfying gab,c = 0. The

Riemannian curvature R of g is the 4-tensor field defined by

Rdabcηd := 2ηa,[bc]

for all ηa ∈ Ea, and takes values in the representation , so it satisfies the symmetries

Rabcd = −Rbacd = −Rabdc = Rcdab and Ra[bcd] = 0. As an O(p, q)-representation, it decom-

poses as

∼=
0

⊕ .

Now,
0

is the representation comprising the tensors S satisfying the symmetries of

and also the tracefree condition S c
acb = 0, and is the space S2 of symmetric 2-tensors.

The space S2 is embedded in via the inclusion

A 7→ g ?A,
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where ? is the Kulkarni-Nomizu product of symmetric 2-tensors defined by

(A?B)abcd := 2Ac[aBb]d + 2Ad[bBa]c.

Then, the projections of the curvature tensor R onto the
0

and components are,

respectively,

Rabcd 7→Wabcd := (R− g ? P )abcd

Rabcd 7→ (g ? P )abcd.

Here, W is called the Weyl tensor, and P is the Schouten tensor, which is a trace

adjustment of the Ricci tensor, Rab := R c
acb ; P is characterized by

Rab := (n− 2)Pab + P d
d gab. (1.13)

Also important in conformal geometry is the Cotton tensor,

Cabc := Pab,c − Pac,b.

By construction it takes values in the representation

b a
c 0

,

where the labeling indicates that it satisfies Cabc = −Cacb, C[abc] = 0, and C a
ab = 0. For

n > 3, it is determined by the Weyl tensor via the divergence identity W a
abcd, = (3−n)Cbcd.

Finally, the Bach tensor is defined by

Bab := C c
abc, − P

cdWcabd

and takes values in the representation 0, that is, it satisfies Bab = Bba and B a
a = 0.

1.2.3 Conformal geometry and the metric bundle

Given a manifold M , a conformal structure (or conformal class) c is an equivalence

class of pseudo-Riemannian metrics on M , where g ∼ ĝ if there is some positive function

Ω ∈ E such that ĝ = Ω2g. The pair (M, c) is called a conformal manifold. Any choice
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g ∈ c is called a representative metric of c. By construction, every metric in a conformal

class has the same signature and so we define the signature of a conformal class to be the

signature of an arbitrary representative g ∈ c.

One can encode a conformal structure (of arbitrary signature) on a manifold by con-

structing a bundle whose fibers comprise the nondegenerate, symmetric, bilinear forms on

the respective tangent spaces determined by the conformal structure. (In this subsection

we partially follow [FG, Section 2].)

Definition 1.2.6. The metric bundle of a conformal structure (M, c) is the ray bundle

π : G →M

whose fiber Gx is the ray of pseudo-inner products yielded by restricting representatives of

the conformal class to TxM , that is,

Gx := {g|TxM : g ∈ c}.

By definition, the (global) sections of G are exactly the representative metrics in the

conformal class, that is, there is a canonical identification c↔ Γ(G). A choice of represen-

tative g ∈ c trivializes G as the product M × R+, where the pair (x, t) is identified with

t2gx ∈ G.

The dilations δs : G → G, s ∈ R+, defined by

δs(x, g) := (x, s2g).

endow G with a principal R+-structure, via the action (x, g) · s = δs(x, g). The infinitesimal

generator of the dilations δs is the natural vector field

T := d
ds

∣∣
1
δs ∈ Γ(TG). (1.14)

Via the trivialization G ↔M × R+ induced by the choice g ∈ c, T = t∂t.

The metric bundle can also be viewed as a natural setting for managing information

about homogeneity of conformal data on M . To this end, we use G to define another class

of bundles:
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Definition 1.2.7. For a weight w ∈ R, the bundle of conformal densities of weight w

is the bundle D[w]→M with fiber

D[w]x := {f : Gx → R : (δs)∗f = swf, s ∈ R+}.

Trivially, any section f ∈ Γ(D[0]) is constant on the fibers of G, so we may identify D[0]

with M × R. By construction, D[w]⊗D[w′] is naturally isomorphic to D[w + w′].

We can construct conformally weighted vector bundles by forming tensor products

with the bundles D[w]: For any real vector bundle V , denote

V [w] := V ⊗D[w].

By construction, sections of D[w] are just real-valued functions on G homogeneous of

degree w. So, via the usual identification of sections of associated bundles with equivariant

vector-valued functions on principal bundles, we may identify D[w] with the vector bundle

G ×R+ R induced by the representation R+ → GL(R) defined by s · t := s−wt. This

identification suggests the alternate notation Γ(V )[w] for the space Γ(V [w]) of sections of

V [w]. Then, using the E notation for spaces of sections of certain tensor bundles, we may

for example compactly denote C∞(M)[w] = Γ(D[w]) by E [w] and Γ(TM [w]) by Ea[w].

Regarding a choice g ∈ c as a section M → G identifies sections of weighted conformal

density bundles with functions: If f ∈ E [w], then f ◦ g ∈ E . By construction, another

representative ĝ = Ω2g then identifies f with f ◦ ĝ = Ωwf ◦ g.

The metric bundle G also admits a tautological symmetric, bilinear form g ∈ S2T ∗G,

defined for X,Y ∈ T(x,h)G by

g(X,Y ) := h(dπ(x,h)(X), dπ(x,h)(Y )).

We may naturally identify g with the conformal structure itself, and by homogeneity it is a

section in E(ab)[2]. Via the identification G ↔M ×R+ induced by a choice of representative

g ∈ c, g is identified with t2g, where we suppress the notation π∗ for the pullback of a tensor

on M to G.
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1.2.4 Conformal geometry as parabolic geometry of type (o(p+ 1, q + 1), Ṗ )

In this subsection we elaborate on Examples 1.1.7 and 1.1.21 and collect more facts about

conformal geometry regarded as parabolic geometry.

In a basis in which a nondegenerate, symmetric, bilinear form on Rp+1,q+1 has the form
0 0 1

0 hab 0

1 0 0

 , (1.15)

the Lie algebra o(p + 1, q + 1) of the orthogonal group preserving the bilinear form has

representation


λ Zb 0

Xa Y a
b −Za

0 −Xb −λ

 : λ ∈ R, Xa ∈ Rp,q, Y a
b ∈ o(h), Zb ∈ (Rp,q)∗

 ,

where indices are raised and lowered with h. Computing brackets shows that decomposition

o(h) = g−1 ⊕ g0 ⊕ g1 indicated by the labeling
g0 g1 0

g−1 g0 g−1

0 g−1 g0

 (1.16)

is a |1|-grading on o(h). If we take Ṗ to be the stabilizer of the null ray spanned by the

first basis vector, its Lie subalgebra coincides with the parabolic algebra corresponding to

the |1|-grading,

ṗ = g0 ⊕ g1 =




λ Zb 0

0 Y a
b −Za

0 0 −λ

 : λ ∈ R, Y a
b ∈ o(h), Zb ∈ (Rp,q)∗

 .

We can identify this subalgebra with (Rp,q)∗ o co(h), where co(h) is the Lie algebra of the

(nonoriented) conformal group CO(h) := O(h)·R+. The corresponding nilpotent subalgebra

is

ṅ = g1 =




0 Zb 0

0 0 −Za

0 0 0

 : Zb ∈ (Rp,q)∗

 ,
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which we may identify with the abelian Lie algebra (Rp,q)∗.

For any conformal structure c, let (Ė, ω̇) be the corresponding normal parabolic geometry

of type (o(p+1, q+1), Ṗ ), and let σ̇ ∈ Γ(Ė →M) be an arbitrary section. By construction,

σ̇ determines a representative metric g ∈ c: One can realize E as a principal bundle over

the metric bundle G of c, and so there is a unique metric g, regarded as a section of G,

such that σ̇ factors as σ̇ = ψ ◦ g for some section ψ ∈ Γ(Ė → G). Then, the pullback of

the curvature Ω̇ of ω̇ along an arbitrary section σ̇ ∈ Γ(Ė →M) is an o(p+ 1, q + 1)-valued

2-form on M and is given (suppressing the pullback notation) by

Ω̇abCD =


0 Cdab 0

0 W c
ab d −Ccab

0 0 0

 , (1.17)

where W and C are respectively the Weyl and Cotton tensors of the induced representative

metric g [ČS09b, Section 1.6]. Consulting (1.16) shows that we may identify the zeroth-

graded summand κ0 of the curvature κ with the Weyl curvature.

1.2.5 The Fefferman-Graham ambient construction

The Fefferman-Graham ambient construction encodes a signature-(p, q) conformal structure

c on a (p+ q)-manifold M in a signature-(p+ 1, q + 1) pseudo-Riemannian ambient metric

that is unique in a suitable sense. In this section we largely follow [FG].

The tautological 2-tensor g (see Subsection 1.2.3) on the metric bundle G associated to

a signature-(p, q) conformal structure c on a manifold M is degenerate. One can thicken G

to a (n+ 2)-manifold G ×R, however, and then construct an ambient metric g̃ of signature

(p+ 1, q+ 1) on that space that pulls back to g in a suitable sense, satisfies certain defining

conditions, and is defined on a suitable open subset M̃ ⊂ G × R. Then, one can apply the

tools of pseudo-Riemannian geometry to such an extended metric to produce information

about the original conformal structure.

Let ρ denote the coordinate on the R factor of G × R. We identify the metric bundle,

G, with G × {0} ⊂ G × R via the inclusion ι : z 7→ (z, 0), and in this context G is called the

initial surface. Define for s ∈ R+ the dilations δs : G×R→ G×R by δs(gx, ρ) = (s2gx, ρ),



32

which hence define a R+-action on G × R, and denote the infinitesimal generator of δs by

T = ∂
∂s |1δ

s. By construction δs and T extend the so-named maps and vector field on G.

Subsection 1.2.3 showed that choosing a representative g ∈ c yields a global trivialization of

G by identifying (x, t) ∈ M × R+ with (x, t2gx) ∈ G. Using this trivialization, we may give

points in G ×R as triples (t, x, ρ) ∈ R+ ×M ×R, which defines an embedding M ↪→ G ×R

by x → (1, x, 0); furthermore, δs is then given by δs(t, x, ρ) = (st, x, ρ), and T is just t∂t.

We use uppercase Latin indices, A,B,C, . . ., for objects on G×R, and when we have chosen

a representative g ∈ c, we use a 0 index for the metric bundle fiber (R+) factor, lowercase

Latin indices, a, b, c, . . ., for objects on the M factor, and an ∞ index for the R factor in

the induced identification.

Call a metric g̃ of signature (p + 1, q + 1) on an open neighborhood M̃ of G a pre-

ambient metric for a conformal structure (M, c) if ι∗g̃ = g and (δs)∗g̃ = s2g̃ for s ∈ R+

(in particular, the latter condition requires that M̃ be invariant under dilation). A pre-

ambient metric is straight if ∇̃T = idTM̃ , where ∇̃ is the Levi-Civita connection of g̃.

Conformal geometry is fundamentally different in even and odd dimensions, and this is

especially clear from the viewpoint of ambient geometry: We define an ambient metric to

be a pre-ambient metric that satisfies an additional condition, but this condition depends

on the parity of the dimension. If n is odd, an ambient metric for a conformal structure

(M, c) is a straight, pre-ambient metric for that structure that is Ricci-flat to infinite order

along G.

The appropriate formulation for even n is more subtle: If SAB is a symmetric 2-tensor

field on an open neighborhood of G ⊂M × R and m ≥ 0, denote SAB = O+
AB(ρm) if

(i) SAB = O(ρm);

(ii) for each z ∈ G, (ι∗(ρ−mS))(z) = π∗s for some gπ(z)-tracefree s ∈ S2T ∗π(z)M . (Here,

ρ−mS denotes the unique continuous extension of that tensor across G.)

If n is even, an ambient metric for a conformal structure (M, c) is a straight, pre-ambient

metric for that structure that satisfies Ric(g̃) = O+
AB(ρn/2−1).



33

If g̃ is an ambient metric on M̃ for the conformal structure (M, c), then the pair (M̃, g̃)

is called an ambient manifold for (M, c).

Theorem 1.2.8. [FG] If (M, c) is a conformal manifold of dimension n ≥ 3, there is an

ambient metric g̃, and it is unique in the following sense:

• If n is odd, it is unique up to infinite order and up to pullback by a diffeomorphism

defined on a dilation-invariant neighborhood of G in G × R which commutes with the

dilations δs and fixes G pointwise.

• If n is even, it is unique up to addition of terms satisfying O+
AB(ρn/2) and up to

pullback by a diffeomorphism defined on a dilation-invariant neighborhood of G in

G × R which commutes with the dilations δs and fixes G pointwise.

For conformal manifolds (M, c) of even dimension n ≥ 4, the existence of ambient metrics

Ricci-flat to order higher than O(ρn/2−1) is obstructed precisely by a conformally invariant

tensor, the ambient obstruction tensor, O. In fact, (M, c) admits an ambient metric Ricci-

flat to infinite order iff O = 0. For such n we define an infinite-order ambient metric

for a conformal manifold (M, c) to be a straight pre-ambient metric g̃ for (M, c) for which

Ric(g̃) vanishes to infinite order. When n is even, any choice of infinite-order ambient metric

is determined by the curvature component R̃∞ab∞,∞···∞︸ ︷︷ ︸
n/2−2

, and this component may be freely

prescribed to be an arbitrary tracefree, symmetric 2-tensor (on M) whose divergence with

respect to the representative g ∈ c defining the splitting is equal to a natural 1-form that

depends on g.

If a given conformal class c contains a real-analytic metric, then it determines a real-

analytic ambient metric unique up to the indicated order and up to diffeomorphism pre-

serving G pointwise. In particular, if n is odd, then c determines a (real-analytic) ambient

metric unique up to diffeomorphism fixing G pointwise and up to extension.

The diffeomorphism invariance of an ambient metric can be broken by putting it into a

normal form with respect to a choice of representative metric g ∈ c. Say that a pre-ambient

metric g̃ on M̃ is in normal form with respect to g if
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(i) for each z ∈ G, Iz = M̃ ∩ ({z} × R) is an open interval;

(ii) for each z ∈ G, Iz is a parameterized geodesic, with parameterization ρ 7→ (z, ρ);

(iii) under the identification G × R ∼= R+ ×M × R induced by g, g̃|G= 2t dt dρ+ t2g.

The following results specify exactly the uniqueness of ambient metrics in normal form.

Lemma 1.2.9. A straight, pre-ambient metric g̃ of a conformal structure (M, c) is in

normal form with respect to a representative g ∈ c iff it has the form

g̃ = 2ρ dt2 + 2t dt dρ+ t2gρ (1.18)

(in terms of the identification G × R ∼= R+ ×M × R induced by g), where gρ is a smooth

family of metrics on M parameterized by ρ that satisfies g0 = g.

For any pre-ambient metric g̃ of a conformal structure (M, c) and a choice of representa-

tive g ∈ c, there is a unique diffeomorphism φ that commutes with the dilations δs, s ∈ R+,

and fixes G pointwise such that φ∗g̃ is in normal form with respect to g.

Theorem 1.2.10. [FG, Theorem 2.9] Let (M, c) be a conformal structure, and choose a

conformal representative g ∈ c. There is an ambient metric in normal form with respect to

g. If n is odd, gρ is determined to infinite order at ρ = 0. If n is even, gρ is determined

uniquely modulo O(ρn/2), and trg(∂
n/2
ρ |0gρ) is determined.

In principle, one computes the coefficients of the power series
∑∞

k=0 µ
(k)ρk of gρ induc-

tively by analyzing the conditions imposed on them by requiring that the Ricci curvature

vanish along the initial surface to increasing orders; in that sense, the Ricci curvature con-

dition propagates the initial data g0 off G. The terms µ(k) of the general solution have only

been computed for the first several k. The first is

µ
(1)
ab = 2Pab. (1.19)

Provided that n > 4, the second is

µ
(2)
ab = − 1

4− n
Bab + PacP

c
b. (1.20)
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The full sequence (µ(k)) is known only for a few special classes of conformal structures.

One case in which the full sequence (µ(k)) is known is for Einstein conformal classes.

A metric is Einstein iff its Ricci curvature is a constant multiple of g, that is, it satisfies

the condition Rab = 2λ(n − 1)gab for some constant λ, or, equivalently, Pab = λgab. The

constant λ, which is just 1
nP

d
d , is called the Einstein constant of the metric. (Elsewhere,

2λ(n− 1) is sometimes called the Einstein constant.) A conformal structure is Einstein if

it contains an Einstein representative.

If c contains the Einstein representative g ∈ c, say, with Einstein constant λ, then c

admits a distinguished ambient metric g̃can; its normal form with respect to g is

g̃can(t, x, ρ) := 2ρ dt2 + 2t dt dρ+ t2gρ, gρ(x) = (1 + λρ)2g(x). (1.21)

Computing shows that it is Ricci-flat. One can show that every Einstein representative

g ∈ c induces the same ambient metric (1.21) up to diffeomorphism and infinite order.

1.2.6 Ambient curvature

We collect some facts here about the covariant derivative, ∇̃, and curvature tensor, R̃, of

an ambient metric g̃.

Fix a conformal structure c. Computing directly gives that the Christoffel symbols, Γ̃CAB,

of an ambient metric in normal form (1.18) with respect to g ∈ c are:

Γ̃0
AB =


0 0 0

0 −1
2 tg
′
ab 0

0 0 0

 (1.22)

Γ̃cAB =


0 t−1δ c

b 0

t−1δ c
a Γcab

1
2g
cdg′ad

0 1
2g
cdg′bd 0

 (1.23)

Γ̃∞AB =


0 0 t−1

0 −gab + ρg′ab 0

t−1 0 0

 . (1.24)

Everywhere, gab denotes (gρ)ab, and ′ denotes the derivative ∂ρ.
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We now compute the curvature R̃ of an ambient metric g̃ in normal form with respect

to a representative g ∈ c, specializing the indices according to the splitting A ↔ (0, a,∞).

Computing directly again using (1.18) gives

R̃0BCD = 0

R̃abcd = t2
[
Rabcd − 1

2(g ? g′)abcd + ρ
2(g′acg

′
bd − g′adg′bc)

]
R̃∞bcd = 1

2 t
2[(g′bc),d − (g′bd),c]

R̃∞bc∞ = 1
2 t

2[g′′bc − 1
2g
efg′beg

′
cf ].

Here, g represents gρ and R represents the curvature of that metric. Now, these expressions

depend on the choice of the ambient metric; however, since the sequence (µ(k)) is determined

by a given g ∈ c (although just up to k = n
2−1 for n even), and g(k) = k!µ(k), the restrictions

R̃ABCD|G are independent of that extension, except that R̃∞bc∞ depends on the choice of

ambient metric of c for n = 4. Since R̃ is homogeneous, no information is lost by restriction

to M ⊂ M̃ , that is, to {t = 1, ρ = 0}. Using formulas (1.19) and (1.20) for, respectively,

µ(1) and µ(2) gives that the ambient curvature along M ⊂ M̃ is given by

R̃0bcd|M = 0

R̃abcd|M = Wabcd

R̃∞bcd|M = Cbcd

R̃∞bc∞|M = −(n− 4)−1Bbc.

(1.25)

(The formula for R̃∞bc∞|M holds only for n 6= 4.) Under changes of representative g ∈ c,

tensors transform naturally under an action of O(p+ 1, q + 1).

Similarly, the components of the restrictions ∇̃sR̃|M of the covariant derivatives of R̃ to

M ⊂ M̃ are independent of the choice of ambient metric when n odd, and when n even

and the general formula for the component does not contain derivatives of g of too high an

order. The following gives a condition for n even for such a component to be independent

of the choice of ambient metric.

Definition 1.2.11. The strength ||A|| of a specialized index A in the splitting A ↔

(0, a,∞) is ||0|| := 0, ||a|| := 1, ||∞|| := 2. The strength of a multi-index A1 · · ·As of

specialized indices Au in the above splitting is ||A1 · · ·As|| :=
∑s

u=1 ||Au||.
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Proposition 1.2.12. [FG, Proposition 6.2] Suppose c is a conformal structure of even

dimension n ≥ 4. Choose a specialization of the multi-index ABCDE1 · · ·Es; if

||ABCDE1 · · ·Es|| ≤ n+ 1,

then the component R̃ABCD,E1···Es |M of ∇̃sR̃ is independent of the choice of ambient metric

g̃ of c.

The homogeneity of g̃ induces a homogeneity of R̃, which implies identities for compo-

nents of the derivatives ∇̃sR̃ whose multi-indices contain a 0 index in the above splitting.

By construction, with respect to the splitting induced by an arbitrary representative g ∈ c,

T0 = t and Ta = T∞ = 0.

Proposition 1.2.13. The covariant derivatives ∇̃sR̃ of a straight, pre-ambient metric g̃

satisfy

TDR̃ABCD,E1···Es = −
s∑

k=1

R̃ABCEk,E1···Ek−1Ek+1···Es (1.26)

TF R̃ABCD,E1···EiFEi+1···Es = −(i+ 2)R̃ABCD,E1···Es

−
s∑

k=i+1

R̃ABCD,E1···EiEkEi+1···Ek−1Ek+1···Es. (1.27)

1.3 Conformal tractor geometry

Thomas showed one can naturally encode a conformal structure in a vector bundle over

the underlying manifold of the structure, the tractor bundle [Tho26]. This bundle enjoys

several interesting, equivalent formulations. We develop it in Subsection 1.3.1 below using

the ambient construction; in Subsection 1.3.3 we show this formulation is equivalent to the

standard one found in the seminal reference [BEG94], then go on to derive more needed

properties of the bundle. The former perspective partially motivates the main theorem,

Theorem 2.1.2, and the latter emphasizes the role of Einstein metrics in the tractor con-

struction. Both perspectives emphasize a splitting of the bundle naturally induced by a

choice of representative metric in the conformal class, which enables efficient and explicit

computation; this splitting is described in detail in Subsection 1.3.2.
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1.3.1 Ambient formulation of the tractor bundle

In this subsection we partly follow [ČG03].

Fix a conformal structure c of signature (p, q) and an ambient manifold (M̃, g̃) of c. The

(standard) tractor bundle of c is the rank-(n+ 2) bundle T →M , n = p+ q, with fiber

Tx := {χ ∈ Γ(TM̃ |Gx) : Tδs(χ) = sχ, s ∈ R+}.

We call a section of T a (standard) tractor (or tractor field), and by definition we may

canonically identify it with a section in Γ(TM̃ |G) homogeneous of degree −1. (Henceforth,

homogeneity always refers to homogeneity with respect to pullback by the dilations δs.)

Since g̃ is homogeneous of degree 2, so is its restriction g̃|G , and thus for any α, β ∈ Γ(T ),

g̃|G(α, β) is homogeneous of degree 0, that is, constant on the fibers Gx; hence, it defines

a fiber metric gT of signature (p + 1, q + 1) on T , the tractor metric. We call the dual

bundle T ∗ of T the cotractor bundle and sections of it cotractors or tractor 1-forms.

The tractor metric identifies T and T ∗.

We denote indices on T by Latin uppercase letters, A,B,C, . . ., so that we may write

a standard tractor χ as χA. In analogy with the E notation described in the introduction,

we will sometimes denote Γ(T ) by EA and Γ(T ∗), by EA. We may form additional bundles

by considering arbitrary subbundles of the tensor powers
⊗r T ∗ ⊗

⊗r′ T . We call such

bundles tractor tensor bundles and their sections tractor tensors (or tractor tensor

fields). For example, the subbundle ΛrT ∗ ⊂
⊗r T ∗ of totally antisymmetric tractor r-

tensors is a bundle whose sections we call tractor r-forms. Likewise, we call sections of

the subbundle SrT ∗ ⊂
⊗r T ∗ of totally symmetric r-tensors simply symmetric tractor

r-tensors. We further extend the E notation to include bundles of these types: E[A1···Ar]

will denote Γ(ΛrT ∗), and E(A1···Ar) will denote Γ(SrT ∗). By definition, gT ∈ E(AB). Raising

an index of Λ2T yields a distinguished tractor tensor bundle, the adjoint tractor bundle

A, which we can also denote Endskew(T ) and may identify with so(T ).

The tractor metric, together with the infinitesimal generator T of the dilations δs, nat-

urally yields a vector bundle filtration

T 1 ⊂ T 0 ⊂ T
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of T , which thus induces a natural graded bundle,

gr(T ) := T 1 ⊕ (T 0/T 1)⊕ (T /T 0).

We define the pieces of the filtration and identify explicitly the components of this grading

with objects on the base manifold.

Since T generates the dilations δs, they preserve the line subbundle span{T} ⊂ TM̃ |G ,

and we may furthermore regard span{T} as a subbundle T 1 ⊂ T (which is gT -null because

T is g̃|G-null). Now, sections of span{T} are precisely the vector fields of the form fT. Since

T is homogeneous of degree 0, it lies in EA[1]. So if fT ∈ Γ(T ), we must have f ∈ E [−1];

then, the map f 7→ fT defines a natural isomorphism

E [−1] ∼= Γ(T 1),

and composing it with the inclusion T 1 ↪→ T gives a map ι : D[−1] ↪→ T . This map and

the section map it induces, also denoted ι, are both called the canonical injection of the

tractor bundle.

Since T 1 is gT -null, it is contained in its (rank-(n+ 1)) orthogonal bundle T 0 := (T 1)⊥,

completing the definition of the filtration.

We may easily identify the quotient T /T 0: Define the map Π0 : T → D[1] by Π0 : χA →

χATA. By definition of T 0, Π0 vanishes precisely on T 0, so Π0 descends to an isomorphism

T /T 0 ∼= D[1],

and thus we may regard it fiberwise just as the vector space reduction modulo T 0. We call

both Π0 and the corresponding section map (also denoted Π0) the canonical projection

of the tractor bundle.

Finally, we identify the middle quotient, T 0/T 1 of the natural filtration, completing our

description of the induced graded bundle gr(T ). Consider any tractor X ∈ Γ(T 0), that is,

a section of Γ(TG) homogeneous of degree −1. Then, for any f ∈ E [1], fX is a vector field

homogeneous of degree 0 tangent to G, so it is a lift of a unique vector field X̂ ∈ Γ(TM) via

the projection G →M , defining a map T 0 → TM [−1]. Since T spans the tangent space to
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the fibers of G, the kernel of the map comprises exactly the tractors in T 1, and so the map

descends to an isomorphism

T 0/T 1 ∼= TM [−1].

Rewriting this equation in terms of sections of TG ⊂ TM̃ |G and forming the tensor product

of both sides with D[1] (to move the weight to the other side of the equation) yields a

realization of the tangent bundle TM , with fiber

TxM ↔ {V ∈ Γ(TG|Gx) : dδs(V ) = V, s > 0}/span{T}.

We show that via this identification, the Levi-Civita connection ∇̃ of g̃ to G defines a

natural connection ∇T : EA×Eb → EC . For an arbitrary point x ∈M and arbitrary sections

χ ∈ EA and Z ∈ Eb, pick a section Z̄ ∈ Γ(TG|Gx) representing Z in the above realization;

define

∇TZχ := ∇̃Z̄χ.

(On the right-hand side, χ is regarded as a section of TM̃ |G .) Though χ is only defined

along G, Z̄ is everywhere tangent to TG ⊂ TM |G , and so we can take the indicated covariant

derivative. Any other lift of Z to Γ(TG|Gx) has the form Z̄ + fT for some function f ∈ E .

Then,

∇̃Z̄+fTχ = ∇̃Z̄χ+ f∇̃Tχ.

Now, extend χ arbitrarily to a section of TM̃ , which we also denote χ, with the same

homogeneity, and regard T as the restriction of the infinitesimal generator, which we also

denote T, of the dilations δs on M̃ . Then, on M̃ ,

∇̃Tχ = ∇̃χT + [T, χ] = ∇̃χT + LTχ;

since g̃ is straight, ∇̃χT = χ on G, and by homogeneity, LTχ = −χ, so ∇̃Tχ = 0. Restricting

back to G gives that ∇̃Tχ = 0, so ∇̃Z̄χ is independent of the lift Z̄ of Z, and hence ∇TZχ

is well-defined. Moreover, counting homogeneities shows that it is a tractor. Finally, ∇T

inherits linearity over E in the Eb argument and linearity over R in the EA argument from

∇̃, so it defines a connection as desired. Since ∇̃g̃ = 0, we have ∇T gT = 0.

This connection gives rise to a natural curvature.
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Definition 1.3.1. The tractor curvature is the tractor tensor RT ∈ Γ(Λ2T ∗M ⊗ Λ2T ∗)

defined by

(RT ) C
ab Dχ

D := 2χC,[ab]

for all χ ∈ EA.

As with any vector bundle connection, to define the curvature of ∇T we must specify the

connection on M with which it couples so that we can define the second covariant derivative

of a tractor. Let ∇ be the Levi-Civita connection of an arbitrary representative g ∈ c. Then,

define the covariant derivative ∇T : Γ(T ⊗ T ∗M) → Γ(T ⊗ T ∗M ⊗ T ∗M) of an arbitrary

section α ⊗ η ∈ (T ⊗ T ∗M) by ∇T (α ⊗ η) = ∇T α ⊗ η + α ⊗∇η. One can check that the

definition of RT does not depend on the choice of g.

Remark 1.3.2. We may view the tractor bundle as a special case of a much more general

construction on a general parabolic geometry. For any conformal structure, let (E,ω) be

the corresponding normal parabolic geometry of type (o(p + 1, q + 1), Ṗ ). For this choice

of parabolic subgroup, we may identify the standard tractor bundle T with the associated

bundle E ×Ṗ Rp+1,q+1 induced by the restriction of the standard representation of O(p +

1, q + 1) to Ṗ and T 1 with D[−1]. Likewise, we may identify the adjoint tractor bundle

with the associated bundle E ×Ṗ o(p+ 1, q + 1) induced by the adjoint representation.

1.3.2 Splitting of the tractor bundle induced by a conformal representative

Just as a choice of g trivializes G, it induces a splitting of T ; this splitting makes convenient

some computations, and is furthermore used in the proof of Theorem 2.1.2. The splitting is

equivalently given by an isomorphism T ∼= gr(T ), or, via the identifications in the previous

subsection and passing to section maps,

EA ∼= E [1]⊕ Ea[−1]⊕ E [−1].

Trivializing the weighted bundles using g then gives an (again, equivalent) isomorphism

EA ∼= E ⊕ Ea ⊕ E .

For a given conformal class c, fix a representative metric g. Then, to a tractor χ ∈ EA,

which we regard as a map G → TM̃ |G , associate the map χ ◦ g; by definition, (χ ◦ g)(x) ∈
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T(x,gx)M̃ . We can compose with a diffeomorphism of M̃ fixing G pointwise to assume that

g̃ is in normal form with respect to g. Then, the splitting G × R↔ R+ ×M × R induces a

splitting T (G × R) ↔ TR+ ⊕ TM ⊕ TR. The coordinate vector fields ∂t and ∂ρ trivialize

the factors TR+ and TR, respectively, so, via this trivialization, the map χ ◦ g decomposes

as a formal vector function 
χ0

χa

χ∞

 ∈

E

Ea

E

 ,

Here, χ0 and χ∞ respectively denote the TR+ and TR factors, so that in local coordinates

(xa) on M , χ ◦ g has representation χ0∂0 + χa∂a + χ∞∂∞; alternately, denoting ∂0 := ∂t

and ∂∞ := ∂ρ, the representation of χ ◦ g is just χA∂A. Restricting the normal form (1.18)

of g̃ to G = {ρ = 0} gives that in this trivialization, the tractor metric is given by

gT (α, β) = α0β∞ + gabα
aβb + α∞β0.

The trivialization (χ0, χa, χ∞)T of χ ◦ g associated to χ depends on the choice of repre-

sentative g ∈ c; we compute explicitly this dependence.

Proposition 1.3.3. Given a conformal structure c and representatives g and ĝ = e2Υg,

the representations (χ0, χa, χ∞)T and (χ̂0, χ̂b, χ̂∞)T in EA ∼= E ⊕ Ea ⊕E of a tractor χ with

respect to g and ĝ, respectively, are related by
χ̂0

χ̂b

χ̂∞

 =


e−Υ 0 0

0 e−Υ 0

0 0 eΥ




1 −Υa −1
2ΥcΥ

c

0 δba Υb

0 0 1




χ0

χa

χ∞

 . (1.28)

Proof. This proof is adapted from that of [FG, Proposition 6.5], which describes how com-

ponents of the derivatives of ambient curvature vary with the choice of conformal represen-

tative. Let g̃ be an ambient metric in normal form relative to g, so that g̃ has the form

(1.18). Then, there is a unique homogeneous diffeomorphism φ of M̃ fixing G pointwise,

and with respect to which φ∗g̃ is in normal form relative to ĝ, so that g̃ also has the form

(1.18) (now in coordinates (t̂, x̂, ρ̂). The two trivializations satisfy t̂ = e−Υt, so there is a

homogeneous diffeomorphism ψ(t̂, x̂, ρ̂) = (t, x, ρ) so that ˜̂g := ψ∗g̃ also has form (1.18) (in

(t̂, x̂, ρ̂)) and ψ(t̂, x̂, 0) = (t̂eΥ, x̂, 0).
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Applying ∂t̂ to both sides of the equation gives (Tψ)B0 = (eΥ, 0, 0)T , and instead ap-

plying ∂x̂a ∈ Γ(TM) ⊂ Γ(TM̃ |G) to both sides gives TψBa = (eΥt̂Υa, δ
b
a, 0)T . To compute

(Tψ)B∞, we use that ψ∗g̃|G must have the form

ψ∗g̃|G= 2t̂ dt̂ dρ̂+ t̂2ĝabdx̂
adx̂b.

Then, we must have

t̂ = (ψ∗g̃)(∂̂t, ∂̂ρ)

= g̃(Tψ · ∂̂t, Tψ · ∂̂ρ)

= eΥg̃(∂t, Tψ · ∂̂ρ).

Similarly, for X ∈ Γ(TM) ⊂ Γ(TM̃ |G),

0 = (ψ∗g̃)(X, ∂̂ρ)

= g̃(Tψ ·X,Tψ · ∂̂ρ)

= g̃(t̂eΥdΥ(X)∂t +X,Tψ · ∂̂ρ)

= eΥt̂ dΥ(X)g̃(∂t, Tψ · ∂̂ρ) + g̃(X,Tψ · ∂̂ρ).

Similarly, and finally,

0 = (ψ∗g̃)(∂̂ρ, ∂̂ρ)

= g̃(Tψ · ∂̂ρ, Tψ · ∂̂ρ).

Solving these equations in succession give that the Jacobian of ψ along G is

(Tψ|G)BA =


eΥ t̂eΥΥa −1

2 t̂e
−ΥΥcΥ

c

0 δba −e−2ΥΥb

0 0 e−2Υ

 . (1.29)

By definition, a tractor χ has homogeneity −1; furthermore, since dt has homogeneity 1

and dxi and dρ have homogeneity 0, the component χ̃B has homogeneity −1 + s0, where

s0 = 1 if B = 0 and s0 = 0 otherwise, and so

χ̂B|{t̂=1}= e(−1+s0)Υχ̂B|{t̂=e−Υ}. (1.30)
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Evaluating both sides of

χB ◦ ψ = (Tψ)BAχ̂
A

at t̂ = e−Υ, ρ = 0, and substituting using (1.30) gives
χ0

χb

χ∞


∣∣∣∣∣∣∣∣∣
t=1,ρ=0

=


eΥ Υa −1

2e
−2ΥΥcΥc

0 δba −e−2ΥΥb

0 0 e−2Υ




χ̂0

eΥχ̂b

eΥχ̂∞


∣∣∣∣∣∣∣∣∣
t̂=1,ρ=0

Multiplying and solving for χ̂B|t̂=1,ρ=0 gives the desired identity.

Reading off the homogeneities in (1.28) shows that we may naturally regard the com-

ponents of χ in the splitting as sections of weighted bundles, namely, as χ0 ∈ E [−1],

χa ∈ Ea[−1], and χ∞ ∈ E [1], and the unweighted versions of the components are merely

χ0 ◦ g, χa ◦ g, and χ∞ ◦ g. So, a choice of representative g ∈ c induces an isomorphism

EA ∼= E [1]⊕ Ea[−1]⊕ E [−1], that is, an isomorphism T ∼= gr(T ).

The transformation law for the weighted versions of the components is
χ̂0

χ̂b

χ̂∞

 =


1 −Υa −1

2ΥcΥ
c

0 δba Υb

0 0 1




χ0

χa

χ∞

 .

In this splitting, the canonical projection Π0 : EA → E [1] is just χ 7→ χ∞, and the above

transformation law illustrates that χ∞ ∈ E [1] is independent of the choice of representative.

We thus call χ∞ the primary part of χ (whether we regard χ∞ as a weighted or unweighted

section). If χ∞ = 0, then the transformation law shows that χa ∈ Ea[−1] is independent of

the choice of representative g ∈ c, and if χ∞ = 0 and χa = 0, then χ0 ∈ E [−1] is independent

of g. In the splitting, the canonical injection ι : E [−1]→ EA is just the map

ι : σ 7→


σ

0

0

 .

We now compute the tractor connection ∇T in terms of the above splitting. By con-

struction, to describe the splitting of the covariant derivative of a tractor (into unweighted
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components), we just evaluate Γ̃CAB at t = 1, ρ = 0, and (because the associated trac-

tor covariant derivative is just defined for directions tangent to M) keep only the A = a

components. Consulting (1.22) and substituting g′ab = 2Pab gives

Γ̃0
aB =

(
0 −Pab 0

)
Γ̃caB =

(
δ c
a Γcab P c

a

)
Γ̃0
aB =

(
0 −gab 0

)
.

Substituting gives that, in terms of the splitting induced by g, the tractor covariant deriva-

tive is 
χ0

χa

χ∞


,b

=


(χ0)b − Pbcχc

χa,b + δ a
b χ

0 + P a
b χ

∞

(χ∞)b − χb

 . (1.31)

The comma on the left-hand side denotes the tractor covariant derivative, and the commas

in the arguments on the right-hand side denote the Levi-Civita covariant derivative of g.

By construction, if we interpret that latter derivative appropriately, we can interpret all the

components of χ appearing in (1.31) as weighted sections.

Computing directly using this formula gives the components of the tractor curvature in

the induced splitting:

RTab0D = 0

RTabcd = Wabcd

RTab∞d = Cdab,

where W and C are respectively the Weyl and Cotton tensors of the representative g ∈ c

(cf. Example 1.1.21). Alternately, because ∇T is essentially given by restricting ∇̃, by

construction we may simply read these formulas directly from (1.25). By construction, W

has conformal weight 2.

Recall from the beginning of the section that we call the dual T ∗ of the tractor bundle the

cotractor bundle, and that we call its sections cotractors or tractor 1-forms. For convenience,

we prove results in this work mostly in terms of cotractors, so we collect here dualizations

of some of the constructions already described for tractors.
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A choice of representative g ∈ c induces a splitting EA ↔ E [1] ⊕ Ea[1] ⊕ E [−1], and we

denote the components of the splitting using formal row vectors,

χA ↔
(
χ0 χa χ∞

)
.

As above, we can trivialize the weight bundles using g again. Then, using our conventions,

the natural pairing of a cotractor αA and a tractor βB is just given by formal matrix

multiplication:

αAβ
A = α0β

0 + αaβ
a + α∞β

∞ =
(
α0 αa α∞

)
β0

βa

β∞

 .

In terms of such a splitting, the covariant derivative is given by(
χ0 χa χ∞

)
,b

=
(

(χ0)b − χb χa,b + gabχ0 + Pabχ∞ (χ∞)b − P c
b χc

)
. (1.32)

The weighted component χ0 ∈ E [1] of χ is independent of the choice of representative

g ∈ c, and we call χ0 the primary part of χ. The corresponding canonical projection

is the map Π0 : EA → E [1] given by Π0 : χA 7→ χATA, and the canonical injection

ι : E [−1]→ EA is given by f 7→ fTA.

1.3.3 Conformally Einstein metrics

In this section we give a brief account of the standard realization of the tractor bundle,

mostly following [Gov], highlighting the role of Einstein metrics in tractor geometry, and

showing that it agrees with the construction given in the previous subsection.

Recall that a metric is Einstein iff Pab = λgab for some constant λ, and that a conformal

class is Einstein if it contains an Einstein representative. Taking traces shows that a metric

g is Einstein iff

Pab −
1

n
P d
d gab = 0. (1.33)

So, to determine whether c is Einstein using an arbitrary representative g ∈ c, we analyze

how P changes with the change of representative from g to ĝ and then check whether there

is some representative ĝ ∈ c such that the Schouten tensor P̂ of ĝ satisfies (1.33).
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For an arbitrary representative g ∈ c, we may write ĝ = e2Υg for some function Υ ∈ E

(and conversely any such choice of Υ gives a conformal representative). Computing gives

P̂ ab = Pab −Υab + ΥaΥb. (1.34)

Substituting this equation in (1.33) yields an overdetermined partial differential equation

in Υ, and by construction c is Einstein iff it admits a global solution. This equation is

linear with respect to σ := e−Υ (so, that the corresponding representative is ĝ = σ−2g); it

becomes

(σab + Pabσ)− 1

n
(σ d
d + P d

d σ)gab = 0, (1.35)

so that the left-hand side is just the g-tracefree part of σab + Pabσ. By construction, this

condition is conformally invariant: If σ is a solution to the equation (1.35) for a choice of

representative g, then Ωσ is a solution to the equation for the representative Ω2g. We may

frame this more invariantly using weighted bundles: Recall that we may identify c with

the canonical bilinear form g ∈ E(ab)[2]. The conformal class c is Einstein iff there is a

(nonvanishing) section σ ∈ E [1] such that the metric σ−2g is Einstein; we call such a section

an Einstein scale.

Even though (1.35) is overdetermined and does not generally admit (even local) solutions,

it defines fiberwise a conformally invariant subbundle of the 2-jet bundle J2D[1].

Definition 1.3.4. The (standard) tractor bundle T → M of a conformal structure

(M, c) is the subbundle of the bundle J2D[1] of 2-jets satisfying (1.35). A (standard)

tractor is a section of T .

We show that this definition of the tractor bundle agrees with the one in subsection

1.3.1.

Introducing the auxiliary 1-form µa := σa ∈ Ea[1] realizes (1.35) as a first-order system,

σb − µb = 0

µa,b + Pabσ + ρgab = 0,
(1.36)

where ρ := − 1
n(σ c

c +P c
c σ) ∈ E [−1]. Alternately, we may view these equations as pointwise

conditions defining the subbundle T ⊂ J2D[1] and coordinates (σ, µa, ρ)T on that subbundle.
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Raising the index of µ produces a section µa ∈ E [−1]; then, computing directly shows that

triples (σ, µa, ρ)T satisfying those equations transform under a change of representative g ∈ c

precisely as triples (χ0, χa, χ∞)T do; since this transformation characterizes the previous

construction of the tractor bundle, the two definitions of T agree.

Using this latter formulation of the tractor bundle, we can give an illustrative construc-

tion of the tractor connection, ∇T .

We now manipulate the system to produce a linear equation in ρb but no new auxil-

iary variables, which will thus yield a closed, first-order linear system in (σ, µa, ρ). First,

substituting the first equation in the second gives an equation just in σ and ρ:

σab + Pabσ + ρgab = 0. (1.37)

Differentiating (using c for the derivative index), and applying the Ricci identity to the

resulting term σabc gives

(σacb +Rdabcσd) + Pabσc + Pab,cσ + gabρc = 0.

Contracting with gac and using the characterization (1.13) of the Schouten tensor gives

0 = σccb +Rdbσd + P cbσc + P cb,cσ + ρb

= σccb + (n− 2)P cbσc + P ccσb + P cbσc + P cb,cσ + ρb.

Finally, contracting (1.37) with gab and solving for the Laplacian of σ gives

σcc = −P ccσ − nρ.

Substituting this identity into the previous display equation, applying the product rule, and

solving for ρb gives

ρb − Pbcµc = 0.

Adding this equation to the previous system then gives the system:

σb − µb = 0

µa,b + Pabσ + ρgab = 0

ρb − Pbcµc = 0.

(1.38)
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So, the Einstein condition defines a map

∇T : Γ(D[1]⊗ T ∗M [1]⊗D[−1])→ Γ((D[1]⊗ T ∗M [1]⊗D[−1])⊗ T ∗M)

which maps the triple (σ, µa, ρ) to the formal vector whose entries are left-hand sides of the

equations in the system (1.38). This is just (1.32), and so this definition of ∇T agrees with

the one in Subsection 1.3.1.

So, given a parallel tractor χ ∈ Γ(T ), its triple (σ, µa, ρ)T of components with respect to

the splitting induced by an arbitrary choice g ∈ c satisfies the system. Thus, if also Π0(χ)

is nonvanishing, it is an Einstein scale. Conversely, if σ ∈ E [1] is an Einstein scale, then

by the construction in this subsection, for an arbitrary choice of representative g ∈ c, there

are sections µa ∈ Ea[1] and ρ ∈ E [−1] satisfying the closed, first-order system (1.38), or

equivalently, such that the cotractor whose decomposition with respect to g is (σ, µa, ρ) is

parallel. Rearranging the first two equations in (1.38) (and taking the trace of the second

equation) we can recover µa and ρ:

µa = σa

ρ = − 1
n(σ b

b + P b
b σ).

Of course, these definitions make sense for all σ, not just Einstein scales.

Definition 1.3.5. The (first) BGG splitting operator (for cotractors) is the map L0 :

E [1] → EA defined (with respect to the splitting induced by an arbitrary representative

g ∈ c) by

L0(σ)A :=
(
σ σa − 1

n(σ b
b + P b

b σ)
)

. (1.39)

So, by construction, if χ is parallel, L0 ◦Π0 = idT . Summarizing gives the following:

Proposition 1.3.6. Let c be a conformal structure. The restrictions of the maps Π0 and L0

define a bijective correspondence between Einstein scales (and thus Einstein representatives

of c) and ∇T -parallel sections of T whose primary part is nonvanishing.

If g ∈ c is Einstein, then ξ = 1 satisfies (1.35) (if regarded as a weighted section, ξ is

the unique section such that ξ−2g = g). With respect to the decomposition induced by the
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choice g ∈ c, the corresponding parallel cotractor is L0(ξ) = (1, 0,−λ), or L0(ξ) = dt−tλdρ.

Computing gives L0(ξ)AL0(ξ)A = −2λ.

The mild awkwardness of the restriction in the previous proposition to nonvanishing

sections suggests a natural generalization of Einstein scales.

Definition 1.3.7. An almost Einstein scale is a (weighted or unweighted) solution of

(1.35) that is not identically zero.

Expanding attention to include almost Einstein structures yields the following analogue

of Proposition 1.3.6, which follows from the same arguments.

Proposition 1.3.8. Let c be a conformal structure. The restrictions of the maps Π0 and

L0 define a bijective correspondence between almost Einstein scales and nonzero ∇T -parallel

sections of T .

The singular set of an almost Einstein scale is just its zero set.

Proposition 1.3.9. The complement of the singular set of an almost Einstein scale is

dense.

Proof. Suppose the singular set of the almost Einstein scale σ is not dense. Then, there is

some nonempty open subset on which σ is identically zero. At any point x of that subset,

the 2-jet of σ is zero, and so L0(σ)x = 0. Since L0(σ) is parallel, it is identically zero, and

thus so is σ, contradicting that σ is an almost Einstein scale.

Given a conformal structure c, an almost Einstein scale σ, say, with singular set S, defines

an Einstein metric g := (σ|M−S)−2(g|M−S) on the dense subset M−S ⊆M , but this metric

cannot be extended to any larger set of M . By the computation after Proposition 1.3.6, if g

has Einstein constant λ, then the function −1
2L0(σ)AL0(σ)A extends that constant function

to all of M without reference to the singular set [Gov]. We again refer to λ as the Einstein

constant of σ.

We may frame the conformally almost Einstein condition (1.35) more invariantly. Propo-

sition 1.3.8 shows that a nonzero weighted function σ ∈ E [−1] is an almost Einstein scale
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iff (∇T ◦ L0)(σ) = 0. Computing in a splitting induced by a choice g ∈ c gives

[L0(σ)]A,b =


0

(σab + Pabσ)− 1
n(σ c

c + P c
c σ)gab

− 1
n(σ c

c + P c
c σ)b − P c

b σc


T

The condition that the middle component vanish is precisely the almost Einstein con-

dition, (1.35). The vanishing of the bottom component is a differential consequence of the

vanishing of the middle component, recovering in tractor language the fact that that al-

most Einstein scales correspond to parallel tractors. Since the primary part of [L0(σ)]A,b

is zero, by construction the projection Π1 onto the middle component (which takes values

in E(ab)0
= Γ(S2

0T
∗M)) is independent of choice of representative g ∈ c, recovering the fact

that the almost Einstein condition is conformally invariant. Note that we may write the

almost Einstein condition invariantly as Θ0(σ) = 0, where

Θ0 := Π1 ◦ ∇T ◦ L0

is the (first) BGG operator (for cotractors):

EA
∇T−−−−→ EAb

L0

x yΠ1

E [1] −−−−→
Θ0

E(ab)0

.

Here, EAb = Γ(T ⊗ TM).

1.3.4 Higher-rank tractor tensors

We can extend many of the results in the previous subsections to tractor tensors of more

types, and in some cases to those induced by arbitrary representations. We state results

here just for covariant tractor tensor bundles, and can recover the corresponding results for

contravariant and mixed tractor tensor bundles just by raising indices.

The decomposition EA ∼= E [1]⊕Ea[1]⊕E [−1] induced by a choice of representative g ∈ c

yields decompositions of arbitrary tractor tensor bundles. For example, we may denote for
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r > 1 a tractor r-form χA1···Ar , that is, a section in E[A1···Ar] = Γ(ΛrT ∗), by χ0a2···ar
χa1···ar

χ0∞a3···ar

χ∞a2···ar

 .

Recall that we denote E[b1···bk] := Γ(ΛkT ∗M). Consulting the homogeneities of the bundles

in the decomposition of the cotractor bundle gives that E[A1···Ar] decomposes as

E[A1···Ar] =

 E[a2···ar][r]
E[a1···ar][r]

E[a3···ar][r − 2]
E[a2···ar][r − 2]

 .

Composing the components with g to produce unweighted forms shows that the expression

for

χ =

 χ0a2···ar
χa1···ar

χ0∞a3···ar

χ∞a2···ar


in a local coframe of the form (dt, dxa, dρ) is just

tr−1χ0a2···ardt ∧ dxa2 ∧ · · · ∧ dxar + trχa1···ardx
a1 ∧ · · · ∧ dxar

+ tr−1χ0∞a3···ardt ∧ dρ ∧ dxa3 · · · ∧ dxar + trχ∞a2···ardρ ∧ dxa2 ∧ · · · ∧ dxar .

Now, let W be any representation of O(p + 1, q + 1) (recall that in this dissertation,

all representations are finite-dimensional). Denote the nilpotent part of Ṗ by Ṅ and its

nilpotent part by ṅ. Since Ṗ normalizes Ṁ , ṅ.W is a Ṗ -subrepresentation of W, yielding a

natural Ṗ -equivariant quotient map

W→Wṅ := W/(ṅ.W).

Now, for any conformal structure c, let (E → M,ω) be the corresponding normal (o(p +

1, q + 1), Ṗ )-geometry. For the associated bundles W := E ×Ṗ W and Wṅ := E ×Ṗ Wṅ, the

quotient map W→Wṅ induces a map

Π0 : W →Wṅ.

This map and its section map, also denoted Π0, are called the canonical projection of W .

We call the image of a section χ ∈ Γ(W ) under Π0 the primary part of χ. For convenience

we henceforth implicitly dualize with gT as needed and regard the induced bundles W as

subbundles of tensor powers
⊗r T ∗ of the cotractor bundle T ∗.
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Example 1.3.10. If W = • (that is, the trivial representation), then Γ(W ) = E and ṅ trivially

annihilates W, so ṅ.W = 0 and thus Π0 may be identified with the identity map.

Example 1.3.11. If W = (the dual of the standard representation), then Γ(W ) = EA.

A straightforward computation shows that Γ(Wṅ) = E [1], and the canonical projection Π0

coincides with the map so named in Subsection 1.3.1.

Example 1.3.12. If W = .
.
.

 r (the antisymmetric representation Λr(Rp+1,q+1)∗), then

Γ(W ) = E[A1···Ar]. A short algebraic argument shows that we may identify Γ(Wṅ) =

E[a2···ar][r] and that the canonical projection is

Π0 : χA1···7→Ar 7→ χ0a2···ar .

Notice that we may also write this map as χ 7→ ι∗(Tyχ), where ι is the inclusion G → M̃ .

By construction, the right-hand side has the indicated weight. (Note that setting r = 1 just

recovers the previous example.)

The tractor connection ∇T induces connections (all also denoted ∇T ) on tractor tensor

bundles W induced by O(p + 1, q + 1)-representations W. They are characterized by the

identities

∇T f = df

for f ∈ E and

∇T (α⊗ β) = α⊗∇T β +∇T α⊗ β

for arbitrary tractor tensors α and β.

Example 1.3.13. Computing directly shows that the connections on the tractor r-form bun-
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dles ΛrT ∗, r > 1 (which again are induced by the representations ΛrV) are given by




χ0a2···ar

χa1···ar |χ0∞a3···ar

χ∞a2···ar


T

,b

=


χ0a2···ar,b − χa2···arb + (r − 1)gb[a2

χ|0∞|a3···ar] χa1···ar,b + rgb[a1
χ|∞|a2···ar]

+rPb[a1
χ|0|a2···ar]

∣∣∣∣∣∣
 χ0∞a3···ar,b + χ∞ba3···ar

−P c
b χ0ca3···ar


χ∞a2···ar,b − P c

b χca2···ar − (r − 1)Pb[a2
χ|0∞|a3···ar]



T

. (1.40)

The comma on the left-hand side denotes the tractor covariant derivative. On the right-hand

side, the commas denote the Levi-Civita connections on the respective bundles ΛqT ∗M , and

the 0 and ∞ indices indicate the component of χA1···Ar , but do not function as indices of

the component function. So, for example, if σa2···ar = χ0a2···ar , then χ0a2···ar,b just denotes

σa2···ar,b, not the 0a2 · · · arb component of ∇T χ.

The BGG splitting operator generalizes to general tractor tensor bundles too; specializ-

ing Theorem 2.5 and Lemma 2.7(2) in [ČSS01] to the present setting gives the following:

Theorem 1.3.14. Suppose W is an irreducible O(p + 1, q + 1)-representation. There is

a linear natural differential operator L0 : Wṅ → W , called the (first) BGG splitting

operator, with the property that if χ ∈ Γ(W ) satisfies ∇T χ = 0, then L0(Π0(χ)) = χ.

More concretely, this theorem just says that any parallel section of a tractor tensor

bundle induced by an irreducible O(p + 1, q + 1)-representation can be recovered from its

projecting part. Strictly speaking, as stated in [ČSS01] this theorem holds for different

parabolic subgroup of O(p + 1, q + 1) with the same Lie algebra ṗ, but it appears to hold

just as well for Ṗ ; we henceforth assume that it does.

Example 1.3.15. If W = •, then because Π0 is the identity, so is L0.

Example 1.3.16. If W = , then the BGG splitting operator L0 : E [1] → EA is just the

so-named map in (1.39).
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Example 1.3.17. If W = .
.
.

 r, then the BGG splitting operator L0 : E[a2···ar][r]→ E[A1···Ar]

can be computed by writing the condition that the parallel tractor tensor be parallel in

components with respect to a splitting induced by an arbitrary choice of representative

g ∈ c and then solving for the components of successively higher strengths. Doing so gives

that L0 is given by [HS09]

L0(σ)A1···Ar

=


σa2···ar

σ[a1···ar−1,ar]

∣∣∣− 1
n−k+1σ

b
ba3···ar, −1

rσ
b

a2···ar,b + r−1
nr σ

b
p[a3···ar|b|,a2] + r−1

n(n−r+2)σ
b

[a3···ar|b|, a2]

+2(r−1)
n P b[a2

σ|b|a3···ar] −
1
nP

b
b σa2···ar





T

. (1.41)

Applying the argument in the proof of Proposition 1.3.9 gives the following result:

Proposition 1.3.18. Suppose W is an irreducible O(p + 1, q + 1)-representation and let

W be the induced tractor tensor bundle. If χ ∈ Γ(W ) is parallel and nonzero, then the

projecting part Π0(χ) of χ is nonzero on a dense open set.

Remark 1.3.19. We may verify this directly for W = .
.
.

 r using (1.41).

Now, for r > 1, let Π1 denote the map E[A1···Ar]b → E[a2···ar]b[r] defined by

Π1 : χA1···Arb 7→ χ0a2···arb.

By construction (or just checking directly), this projection is independent of the choice of

representative. Then, define the (first) BGG operator by

Θ0 := Π1 ◦ ∇T ◦ L0 : E[a2···ar][r]→ E[a2···ar]b[r].

(This form analogizes but does not generalize the BGG splitting operator defined for co-

tractors by (1.39).) Computing directly using (1.40) and (1.41) gives

Θ0(σ)a2···arb = σa2···ar,b − σ[a2···ar,b] −
r − 1

n− r + 2
gb[a2

σ
c

|c|a3···ar], . (1.42)
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We may realize Θ0 in another way: Take V = (Rp,q)∗. Then, the decomposition of the

representation Λr−1V⊗ V, r > 1, into irreducible O(p, q)-representations is

Λr−1V⊗ V ∼= ΛrV⊕ Λr−2V⊕ Λr−1,1V,

where Λr−1,1V denotes the representation

(r − 1)

 ...

0

,

(which comprises the tensors α ∈ Λr−1V ⊗ V satisfying α[a2···arb] = 0 and α
b

a2···ar−1b
= 0).

This decomposition induces [Sem03] a corresponding decomposition

E[a2···ar]b
∼= E[a2···arb] ⊕ E[a2···ar−1] ⊕ E{[a2···ar]b}0 .

Here, E{[a2···ar]b}0 denotes the subspace of tractor tensors in Λr−1T ∗⊗T ∗ formally satisfying

the same identities as α. Consulting (1.42), Θ0(σ) is just given by applying the projection

E[a2···ar]b[r] 7→ E{[a2···ar]b}0 [r] to (∇T L0(σ))[a2···ar]b.

E[A1···Ar]
∇T−−−−→ E[A1···Ar]b

L0

x yΠ1

E[a2···ar][r] −−−−→Θ0

E{[a2···ar]b}0 [r]

.

Definition 1.3.20. A conformal Killing (r−1)-form, r > 1, is a section of in the kernel

of Θ0 : Ea2···ar [r]→ E{[a2···ar]b}0 [r]. In this context, we call Θ0(σ) = 0 the conformal Killing

form equation. A normal conformal Killing (r−1)-form (see [Lei04]), r > 1, is a section

in E[a2···ar][r] in the kernel of ∇T ◦ L0 : Ea2···ar [r] → E[A1···Ar]b. So, any normal conformal

Killing form is a conformal Killing form.

An argument essentially identical to the one that gave Proposition 2.2.9 yields the fol-

lowing analogue:

Proposition 1.3.21. Let c be a conformal structure and fix r > 1. The restrictions of

the maps Π0 and L0 define a bijective correspondence between normal conformal Killing

(r − 1)-forms and parallel tractor r-forms.
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1.4 The groups G2 and P

The primary application of the main theorem (Subsection 2.1.1) given in this work is the

construction of a large family of pseudo-Riemannian metrics with holonomy contained in

group (split) G2, and for which moreover the holonomy is generically equal to that group.

The model for the geometric structures exploited to produce these metrics is a natural,

G2-invariant 2-plane field on the homogeneous space G2/P , where P is a particular 9-

dimensional subgroup of P . In this section we describe these objects in further detail.

1.4.1 The group G2

Complex simple Lie algebras can be classified into four infinite series of “classical” algebras

and five exceptional algebras. The complexification of a real simple Lie algebra is either

a complex simple Lie algebra or (if the real algebra is already such a complex algebra) a

direct sum of two copies of such an algebra, and so real simple Lie algebras may be classified

by determining the (always finitely many) real forms of each complex simple Lie algebra,

that is, real Lie algebras whose complexification is a given simple complex Lie algebra.

The (unique) smallest-dimensional exceptional complex simple Lie algebra, gC2 , has two real

forms, and the Lie algebra of the group denoted G2 in this paper is one of those two forms.

Definition 1.4.1. A composition algebra over R is an algebra over R with a unit and a

nondegenerate bilinear form 〈·, ·〉 satisfying

〈xy, xy〉 = 〈x, x〉 〈y, y〉

for all x, y in the algebra.

The facts here about composition algebras may be found for example in [Har90], where

they are called normed algebras.

The bilinear form 〈·, ·〉 of any composition algebra A, say with unit 1, immediately

induces additional algebraic structure. First, the unit defines an embedding R ↪→ A, and

elements of the image of R are called real. Denote the 〈·, ·〉-orthogonal of R, namely the set

{A ∈ A : 〈A, 1〉 = 0}, by ImA. By hypothesis 〈A,A〉 = 〈A,A〉 〈1, 1〉 for all a, so since 〈·, ·〉 is
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nondegenerate, 〈1, 1〉 = 1, and thus R ∩ ImA = {0}. Define the projections with respect to

the decomposition A = R⊕ImA by Re : A→ R and Im : A→ ImA. We call the images ReA

and ImA of an element A ∈ A respectively the real part and imaginary part of A. Denote

by ·̄ the linear conjugation map A→ A defined by Ā := ReA− ImA; by construction, R

and ImA are exactly the 1- and −1-eigenspaces of ·̄. The bilinear form 〈·, ·〉 can be recovered

from the algebra multiplication and ·̄ by the formula 〈X,Y 〉 = Re(XȲ ) (where we now view

Re as the projection onto the 1-eigenspace with respect to the decomposition of A into the

eigenspaces of ·̄). Restricting 〈X,Y 〉 to ImA defines a nondegenerate bilinear form on that

space. The map

· × · : ImA× ImA→ ImA

defined by

X × Y := Im(XȲ )

is called the cross product on A. Regarding × as a (2, 1)-tensor on A, dualizing with 〈·, ·〉,

and reversing the sign (to agree with a convention used elsewhere, including in [Sag06])

yields a 3-form Φ ∈ Λ3(ImA)∗ defined by

Φ(X,Y, Z) := −〈X × Y , Z〉 = 〈XY ,Z〉 .

There are exactly seven composition algebras up to isomorphism. Four of the algebras

are the familiar normed division algebras, R, C, H, and O, all endowed with the usual

multiplication and conjugation, and each can be derived from the previous one using the

so-called Cayley construction. The remaining three are split versions of the last three of

the above, and can be described in a uniform way using an analogue of the Cayley con-

struction: Taking K to be R, C, or H, and endowing the set K×K with the multiplication

(a, b)(c, d) = (ac+ db̄, ād+ cb) and conjugation (a, b) = (ā,−b) produces composition alge-

bras respectively denoted C̃ ∼= R ⊕ R, H̃ ∼= M2×2(R), and Õ (here, ∼= denotes an algebra

automorphism).

We herein restrict our attention to the Õ, the split octonions. We show that one

can recover the product on Õ from the imaginary split octonion cross product, ×, and
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equivalently from the corresponding 3-form Φ ∈ Λ3(Im Õ)∗. For X,Y ∈ Im Õ ⊂ Õ we have

XY = Re(XY ) + Im(XY ) =
〈
X,Y

〉
+X × Y = −〈X,Y 〉 −X × Y .

We can express 〈·, ·〉 in terms of × via

〈X,Y 〉 = −1

6
tr(X × (Y × ·)), (1.43)

where X × (Y × ·) denotes the map Im Õ× Im Õ [Bae02]. This fact already suffices for our

purposes, but we can easily recover the product for all pairs of arguments in Õ, not just

those in Im Õ: Explicitly, for (a,X), (b, Y ) ∈ R⊕ Im Õ ∼= Õ, the product is given by

(a,X)(b, Y ) = (ab− 〈X,Y 〉 , aY + bX −X × Y ).

Definition 1.4.2. The group G2 is the Lie group Aut(Õ) of algebra automorphisms of the

split octonions.

Because the algebra structure of Õ is equivalent to the associated 3-form Φ ∈ Λ3(Im Õ)∗,

G2 is also precisely the stabilizer of that 3-form in GL(Im Õ).

Remark 1.4.3. We justify the name G2 below by showing that the Lie algebra der(Õ) of

Aut(Õ) is a simple real Lie algebra whose complexification has Dynkin diagram of type

G2. [FH]

Remark 1.4.4. Especially when discussed in the context of related groups also sometimes

called G2, the group just defined is sometimes denoted Gs
2, G∗2(2), or G̃2.

The group G2 is connected and its fundamental group is Z2. In particular, it has a

unique, simply connected, 2-fold cover; that cover admits no other quotients (up to isomor-

phism). There are two other groups, both related to these, sometimes called G2. Complex-

ifying G2 produces the third of these groups, GC
2 . The other is the compact real form Gc

2

of GC
2 ; it is the maximal compact subgroup of GC

2 and is the algebra automorphism group

of the (standard) octonions.

In general, a k-form φ on a vector space V is said to be generic if its GL(V )-orbit

GL(V ) · φ is open. Engel showed [Eng00] that C7 admits exactly one orbit of generic

complex 3-forms, and that the stabilizer in GL(7,C) of any form in the orbit is isomorphic
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to the complexification GC
2 of G2. The intersection of this orbit with Λ3(R7)∗ is the union

of two distinct GL(7,R)-orbits of real 3-forms. One can show that Φ ∈ Λ3(Im Õ)∗ ∼=

Λ3(R7)∗ is generic, so the stabilizer of an arbitrary 3-form in its orbit is isomorphic to

G2; for any 7-dimensional real vector space V , a 3-form φ ∈ Λ3V ∗ is said to be of split

type if for some (equivalently, every) isomorphism V ∗ ∼= (R7)∗ the image of φ under the

induced isomorphism is in that orbit. The stabilizer of any 3-form in the remaining orbit is

isomorphic to the compact group Gc
2, which can be realized as the algebra automorphism

group of the (standard) octonions, O.

We can alternately recover the bilinear form 〈·, ·〉 on Im Õ from Φ as follows. Any 3-form

ψ on a 7-dimensional real vector space V defines a symmetric bilinear form

βψ : V × V → Λ7V ∗ by

βψ(X,Y ) := (Xyψ) ∧ (Yyψ) ∧ ψ. (1.44)

The determinant detβψ can be regarded as an element of S9Λ7V ∗, so there is a unique

element Ω ∈ Λ7V ∗ such that Ω9 = detβψ, where Ω9 denotes the ninth symmetric power

of Ω. If φ is generic, then βψ is nondegenerate and detβψ 6= 0, inducing a Hodge star

isomorphism R↔ Λ7V ∗ defined by a↔ aΩ. Composing this isomorphism with βψ realizes

it as a real-valued, nondegenerate, symmetric bilinear form. For ψ = Φ, this agrees with

(1.43) up to a nonzero constant multiple.

We now derive an explicit matrix representation of the Lie algebra g2 = Der Õ, largely

following Sagerschnig [Sag06]. We first develop some notation to describe split octonions.

One explicit realization of Õ is as the vector space of formal matrices of the the form ξ x

y η


where x, y ∈ R3 and ξ, η ∈ R, endowed with componentwise addition and with multiplication ξ x

y η

 ξ′ x′

y′ η′

 :=

 ξξ′ + 〈x, y′〉 ξx′ + η′x+ y ∧ y′

ηy′ + ξ′y − x ∧ x′ ηη′ + 〈y, x′〉

 ,

where 〈·, ·〉 is the standard inner product on R3 and ∧ denotes the standard cross product

on R3 [Zor30].
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The (4, 4)-signature bilinear form is〈 ξ x

y η

,
 ξ′ x′

y′ η′

〉 = 1
2(ξ′η + η′ξ −

〈
x, y′

〉
−
〈
x′, y

〉
).

The unit is

E =

 1 0

0 1

 .

Any algebra automorphism of a composition algebra preserves its inner product [SV00];

so, since any element of G2 (algebra automorphism of Õ) fixes the unit E, it must also

preserve its orthogonal complement, the seven-dimensional vector space Im Õ of imaginary

split octonions, yielding a faithful representation G2 ↪→ GL(Im Õ). Computing explicitly,

Im Õ comprises exactly the formal matrices in Õ of the form ξ x

y −ξ

 .

Moreover, the restriction of 〈·, ·〉 to Im Õ is a (3, 4)-signature inner product; this inner

product inherits its G2-invariance from the original inner product, yielding a faithful repre-

sentation

G2 ↪→ SO(Im Õ) ∼= SO(3, 4).

(An analogous argument gives that Gc
2 may be embedded in SO(7).)

Differentiating the embedding G2 ↪→ SO(Im Õ) yields a Lie algebra inclusion

g2 ↪→ so(Im Õ) ∼= so(3, 4).

Define the basis (Xi) of Im Õ, where

X1 :=

 0 e1

0 0

 , X2 :=

 0 e2

0 0

 , X3 :=

 0 e3

0 0

 ,

X4 :=
1√
2

 1 0

0 −1

 ,

X5 :=

 0 0

−e1 0

 , X6 :=

 0 0

−e2 0

 , X7 :=

 0 0

−e3 0

 .
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With respect to this basis, the quadratic form on Im Õ is

1

2


0 0 I3

0 −1 0

I3 0 0

 . (1.45)

and computing directly gives that the Lie algebra so(Im Õ) is given by


A v B

wT 0 vT

C w −AT

 : v, w ∈ R3;A ∈ gl(3);B,C ∈ so(3)

 .

We now check which matrices in so(Im Õ) are in g2 = Der Õ, that is, which act as

derivations of Õ. For example, since X1X2 = X7, any derivation

M =


A v B

wT 0 vT

C w −AT

 ∈ g2

must satisfy

M ·X7 = M · (X1X2) = (M ·X1)X2 +X1(M ·X2).

In the above notation, this reads


A v B

wT 0 vT

C w −AT

 ·
 0 0

−e3 0



=




A v B

wT 0 vT

C w −AT

 ·
 0 e1

0 0



 0 e2

0 0



+

 0 e1

0 0





A v B

wT 0 vT

C w −AT

 ·
 0 e2

0 0


 .
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Computing, this is √2vT e3 Be3

AT e3 −
√

2vT e3


=

 eT2 Ce1 −(
√

2wT e2)e1 + (
√

2wT e1)e2

−[(Ae1) ∧ e2 + e1 ∧ (Ae2)] −eT2 Ce1

 .

Comparing the (2, 1)-entries gives AT e3 = −[(Ae1)∧e2 +e1∧ (Ae2)]; expanding this expres-

sion in coordinates gives that this condition is equivalent to trA = 0, that is, A ∈ sl(3,R).

Comparing the other entries gives that particular entries of B and C must be certain ex-

pressions in v and w; applying the above argument to all other products of pairs of basis

elements Xi shows that so are the other entries of B and C. In particular,

B =
1√
2


0 w3 −w2

−w3 0 w1

w2 −w1 0

 and C =
1√
2


0 −v3 v2

v3 0 −v1

−v2 v1 0


(where vi and wi are the components of v and w, respectively), so that for x ∈ R3, Bx =

− 1√
2
w ∧ x and Cx = 1√

2
v ∧ x.

Since the conditions imposed by the multiplications of pairs of basis elements Xi exhaust

the conditions for a matrix in so(Im Õ) to act as a derivation of Õ, g2 comprises exactly the

matrices of the form

a11 a12 a13 v1 0 1√
2
w3 − 1√

2
w2

a21 a22 a23 v2 − 1√
2
w3 0 1√

2
w1

a31 a32 a33 v3
1√
2
w2 − 1√

2
w1 0

w1 w2 w3 0 v1 v2 v3

0 − 1√
2
v3

1√
2
v2 w1 −a11 −a21 −a31

1√
2
v3 0 − 1√

2
v1 w2 −a12 −a22 −a32

− 1√
2
v2

1√
2
v1 0 w3 −a13 −a23 −a33


, (1.46)

where all entries are in R and a11 + a22 + a33 = 0.

We can check that the Lie algebra of matrices of this form is simple. We may choose the

Cartan subalgebra h < g2 to be the set of diagonal matrices in g2, so that h is spanned by
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e11 − e22 − e55 + e66 and e22 − e33 − e66 + e77; here, eij is the matrix with (i, j) entry 1 and

all other entries 0. Computing the roots of the adjoint representation with respect to this

(or any other) Cartan subalgebra of g2 shows that this Lie algebra has Dynkin diagram of

type G2, justifying the name G2 for Aut(Õ).

We may use the root decomposition to construct a |3|-grading on g2: Let φi ∈ h∗ be

the functional that returns the (i, i) entry of the element of the Lie algebra in the above

matrix representation. We may choose α = φ2 (a short root) and α′ = φ1 − φ2 (a long

root) to be the simple roots of the g2. By definition, any root may be written as a Z-

linear combination nα + n′α′ of simple roots, so we may define a grading (gi) = (g2)i by

declaring the root spaces with α coefficient n to be in the summand gn. (Note that for

i = 2 the abbreviated notation gi for the ith graded piece conflicts with the notation g2 for

the Lie algebra discussed here; context will determine which object that symbol denotes.)

The identity [Lβ, Lγ ] ⊆ Lβ+γ for root spaces Lβ, Lγ , Lβ+γ guarantees that the grading (gi)

respects the bracket in the sense of condition (i) of Definition 1.1.10. Direct checking—say,

by inspection of the Dynkin diagram with roots labeled by grading summand—shows that

the other two conditions in that definition also hold.

In the above representation, the grading (gi) is indicated by

g0 g0 g3 g1 0 g2 g−1

g0 g0 g3 g1 g2 0 g−1

g−3 g−3 g0 g−2 g−1 g−1 0

g−1 g−1 g2 0 g1 g1 g−2

0 g−2 g1 g−1 g0 g0 g−3

g−2 0 g1 g−1 g0 g0 g−3

g1 g1 0 g2 g3 g3 g0


. (1.47)

1.4.2 The G2 cone and the induced model geometry

The algebraic structure of the octonions naturally induces additional structure on the space

of null rays (alternately, the space of null lines) in Im Õ, namely, a field of tangent 2-planes

satisfying a nonintegrability condition called genericity (see Example 1.1.24 and Definition

1.5.2). This space, together with the 2-plane field, comprise a model of generic 2-plane field
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on 5-manifolds. In this subsection, we construct that model explicitly.

Consider the imaginary split octonions Im Õ, the (6-dimensional) null cone of the signature-

(3, 4) pseudo-inner product 〈X,Y 〉 = Re(XY ), that is, the set

N := {X ∈ Im Õ− {0} : 〈X,X〉 = 0},

and the imaginary split octonion cross product, X × Y = Im(XY ), which we may regard

as a totally 〈·, ·〉-skew (2, 1) tensor Φ c
ab . For any X ∈ Im Õ, we have that X is contained in

the subspace X† := ker(X × ·). Recall the (split) octonion identity

X × (X × Y ) = −〈X,X〉Y + 〈X,Y 〉X

and henceforth specialize to X ∈ N . Substituting Y ∈ X† gives 〈X,Y 〉 = 0, so X† ⊂ X⊥.

Then, interchanging the roles of X and Y ∈ X† in the identity then gives 〈Y, Y 〉 = 0,

that is, that X† is totally null, and so X† ⊂ (X†)⊥. Denoting the span of X by [X], this

defines fiberwise using just the algebraic structure on Õ a filtration of the tangent space

TXN ⊂ TX Im Õ, which we identify with Im Õ in the canonical way:

[X] ⊂ X† ⊂ (X†)⊥ ⊂ X⊥ = TXN .

Varying X over N , this defines a filtration of the tangent bundle of N . Since G2 acts

transitively on N and by definition preserves the algebraic structure on Õ, it preserves the

tangent bundle filtration, and each plane field in the filtration has constant rank. Computing

an example shows that dimX† = 3, so the fields have respective rank 1, 3, 4, and 6.

Now consider the null ray space R, the 5-dimensional space of 〈·, ·〉-null (open) rays in

Im Õ. Since 〈·, ·〉 has signature (3, 4), R is homeomorphic to S2×S3. By construction, these

rays are precisely the orbits of the natural action of R+ on R, and let π : N → R denote

reduction modulo this action. Fix x ∈ R; for any X ∈ π−1(x), we may naturally identify

TxR ↔ (TXN )/[X], and so the above filtration of TXN descends to a filtration of TxR.

Because the filtration of TN is invariant under the (linear) action of R+, the filtration of

TxR is independent of the choice of preimage X, and so varying x defines a natural tangent

bundle filtration,

DR ⊂ D1
R ⊂ TR.
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Checking directly in an arbitrary local frame of DR and using the transitivity of G2 (whose

action on N is linear and which thus descends to an action on R) shows that (globally)

D1
R = [DR,DR] and TM = [DR, [DR,DR]], and so DR is generic (again, see Example 1.1.24

and Definition 1.5.2). We call the pair (R,DR) the orientable model for the geometry of

generic 2-plane fields on 5-manifolds.

Now, define P to be the stabilizer of an arbitrary null ray in R; since G2 acts transitively

on R, the isomorphism type of P is independent of this choice. If we choose the ray to be

the one containing X7 (defined in Subsection 1.4.1), checking directly shows that the Lie

algebra p of P is just g0 = g0 ⊕ g1 ⊕ g2 ⊕ g3, so P is indeed parabolic.

The following theorem of Sagerschnig shows that the orientable model (R, P ) is just the

model geometry (G2 → G2/P, ωMC) of the parabolic geometry of type (g2, P ).

Theorem 1.4.5. [Sag06] The action of G2 on R induces a diffeomorphism G2/P ∼= R.

The tangent map of this diffeomorphism maps the 2-plane field G2×P (g−1/p) onto the field

DR ⊂ TR defined in Subsection 1.4.2.

Proof. We first establish the diffeomorphisms. It is convenient to realize P concretely as the

stabilizer of the null ray x7 containing X7, the (highest-weight) vector, which was defined

in Subsection 1.4.1. Since G2/P and R both have dimension 5, the orbit of x7 is open in

R. It turns out that any model of a parabolic geometry is compact, so the map G2 → N

defined by g 7→ g ·X7 yields a diffeomorphism G2/P
∼=→ R, and in particular, we may regard

the latter as a model space for (g2, P ) geometry.

We now compute each tangent space TxR: Recall from Subsection 1.4.2 that for any

X ∈ x we may identify TxR = X⊥/(RX). Because both plane fields are G2-invariant,

to show that the tangent map of the diffeomorphism maps one plane field to the other, it

suffices to show that it does so at any one point. We do so for the highest weight vector X7

given in Subsection 1.4.1.

By definition, the subset X†7 ⊂ TX7N consists of the vectors Y ∈ Im Õ such that X7Y

is a real multiple of E. Writing

Y =

 ξ x

y −ξ
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and expanding X7Y in formal matrices shows that this is true only when ξ = 0, y is a real

multiple of e3, and x ⊥ e3. Comparing these conditions with the weight decomposition of

the standard representation V = Im Õ of G2 shows that X†7 is a direct sum of weight spaces

Vα1+2α2 ⊕ Vα1+α2 ⊕ Vα2 .

(The first factor is the highest weight space, that is, RX7.) Passing to quotients yields a

tangent space isomorphism Tid ·P (G2/P )→ Tx7R (alternately, g2/p→ X⊥7 /(RX7)) induced

by the diffeomorphism. By construction, the filtration component g−1 may be decomposed

as p ⊕ V−α1 ⊕ V−α1−α2 . Moreover, p stabilizes X7 and the other two factors respectively

map RX7 onto the weight spaces Vα1+α2 and Vα2 . Passing to the quotient, the isomorphism

maps g−1/p onto X⊥7 /(RX7).

Recall that there is a natural inclusion G2 ↪→ SO(3, 4). By construction, P < G2

coincides with the intersection G2 ∩Ṗ , where Ṗ is the stabilizer in O(3, 4) of a null ray.

Nurowski exploited this inclusion to associate to any generic 2-plane field on a 5-manifold

a canonical conformal structure on that manifold [Nur05]; see Subsection 1.5.3.

We henceforth use an alternate representation of G2 and g2, derived as above but using

the 3-form

Φ = 6dx012 +
√

3(dx036 − dx135 + dx234) + dx456, (1.48)

on R7 with coordinates x0, . . . , x6, instead of the one produced using the above construction

of the split octonions. (Here, dxabc := dxa ∧ dxb ∧ dxc.) In this representation, g2 comprises

the matrices of the form

−(a1 + a4) a8 a9 − 1√
3
a7

1
2
√

3
a5

1
2
√

3
a6 0

b1 a1 a2
1√
3
b4 − 1

2
√

3
b3 0 1

2
√

3
a6

b2 a3 a4
1√
3
b5 0 − 1

2
√

3
b3 − 1

2
√

3
a5

b3 a5 a6 0 1√
3
b5 − 1√

3
b4 − 1√

3
a7

b4 a7 0 a6 −a4 a2 −a9

b5 0 a7 −a5 a3 −a1 a8

0 b5 −b4 b3 −b2 b1 a1 + a4


, (1.49)

where the coefficients ai and bj vary over R.
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Now, the induced nondegenerate, symmetric bilinear form (1.44) is given up to a constant

with respect to (dxi) by 
0 0 1

0 h 0

1 0 0

 ,

where

h =



0 0 0 0 −1

0 0 0 1 0

0 0 −1 0 0

0 1 0 0 0

−1 0 0 0 0


. (1.50)

We now fix a representations p: Take P to be the stabilizer in G2 of the null ray ∂x0 ·R+

in R7; directly computing gives that its Lie subalgebra p comprises the matrices in g2 of the

form 

−(a1 + a4) a8 a9 − 1√
3
a7

1
2
√

3
a5

1
2
√

3
a6 0

0 a1 a2 0 0 0 1
2
√

3
a6

0 a3 a4 0 0 0 − 1
2
√

3
a5

0 a5 a6 0 0 0 − 1√
3
a7

0 a7 0 a6 −a4 a2 −a9

0 0 a7 −a5 a3 −a1 a8

0 0 0 0 0 0 a1 + a4


, (1.51)

where all parameters ai are real.

Using the corresponding |3|-grading, one can identify the decomposition of the parabolic

subalgebra p into a direct sum of semisimple, abelian, and nilpotent pieces, p = m⊕ a⊕ n,

and then the corresponding decomposition P = MAN : Explicitly, we have

M =





1 0 0 0 0

0 B 0 0 0

0 0 1 0 0

0 0 0 B 0

0 0 0 0 1


: B ∈ SL(2,R)
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A =





s−2 0 0 0 0

0 sI2 0 0 0

0 0 1 0 0

0 0 0 s−1I2 0

0 0 0 0 s2


: s ∈ R+



N =





1 a8 − 1
2
√

3
a5a7 a9 − 1

2
√

3
a6a7 −1

3a7
1

2
√

3
a5

1
2
√

3
a6 ∗

0 1 0 0 0 0 1
2
√

3
a6

0 0 1 0 0 0 − 1
2
√

3
a5

0 a5 a6 1 0 0 − 1√
3
a7

0 a7 + a5a6 a2
6 a6 1 0 −a9 − 1

2
√

3
a6a7

0 −a2
5 a7 − a5a6 −a5 0 1 a8 + 1

2
√

3
a5a7

0 0 0 0 0 0 1





,

(1.52)

where the entry ∗ is given by

1√
3
a6a8 − 1√

3
a5a9 + 1

3a
2
7

and the parameters a5, a6, a7, a8, and a9 vary over R. In particular, the Levi subgroup G0

of P is MA ∼= GL+(2,R).

1.5 Generic 2-plane fields on 5-manifolds

The geometry of 2-plane fields on 5-manifolds enjoys several motivations for its investigation.

First, they arise naturally from a simple physical system: The configuration space of the

system of two suitable surfaces rolling along one another is a 5-manifold, and the physical

no-slip and no-spin conditions together define on that space a 2-plane field to which any

trajectory of the system satisfying those conditions must be tangent [BM09]. Next, they

are of significant historical interest: Cartan used his equivalence method to study these

structures in the his famous “five-variables paper” [Car10]. Earlier, one of the first geometric

realizations of an exceptional Lie algebra was that of gC2 as the Lie algebra of vector fields

preserving a particular complex generic 2-plane field, due independently to both Cartan

[Car93] and Engel [Eng93]. This construction and, relatedly, that of the oriented model
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in Subsection 1.4.2, suggests that 2-plane fields on 5-manifolds are intimately related to

various exceptional objects, including the algebra of split octonions, Õ, its 7-dimensional

cross product (or equivalently, its defining 3-form), and the exceptional Lie groups G2 and

GC
2 . We exploit these relationships in Section 3.1 to construct metrics of holonomy contained

in, and generically equal to, G2.

1.5.1 Geometry of generic 2-plane fields on 5-manifolds

Generic 2-plane fields on 5-manifolds enjoy a rich intrinsic geometry.

Definition 1.5.1. The Lie bracket of two plane fields A and B on a manifold M is the

subset

{(x, [X,Y ]x) : X ∈ Γ(A), Y ∈ Γ(B)} ⊂ TM . (1.53)

In general this subset need not be a (constant-rank) vector subbundle, though it always

will be for the objects we consider.

Definition 1.5.2. A 2-plane field D on a 5-manifold M is generic if [D, [D,D]] = TM .

Given such a plane field D on a manifold M , we call M the base manifold of D.

Recall that oriented fields of this type are in bijective correspondence with (normal,

regular) parabolic geometries of type (g2, P ), where P is the subgroup defined in Section

1.4. We specialize the definitions in Subsection 1.1.2: Two such fields, say, (M1,D1) and

(M2,D2), are locally equivalent near points x1 and x2 (in the sense of Cartan geometries)

if there is a local diffeomorphism ψ from a neighborhood U1 of x1 to one U2 of x2 such that

Tψ · (D1|U1) = D2|U2 ; a field is locally flat if it is locally equivalent near any point in the

underlying manifold to the oriented model (R,DR) at any (equivalently, every) point.

We collect some facts here about these fields: Fix M and D. Using the Leibniz rule

for Lie brackets of vector fields shows that [D,D] = D + [D,D]. So, if D is generic, then

[D,D] necessarily has constant rank 3. By construction, any local frame (X,Y ) of D induces

frames

(X,Y, [X,Y ])
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of [D,D] and

(X,Y, [X,Y ], [X, [X,Y ]], [Y, [X,Y ]])

of TM .

The field D defines a filtered manifold structure (T kM) on TM (see Subsection 1.1.3):

Define 
T−1M = D

T−2M = [D,D]

T−3M = TM

.

The only nontrivial summands of the induced graded bundle, gr(TM), are
gr−1(TM) = D

gr−2(TM) = [D,D]/D

gr−3(TM) = TM/[D,D]

.

Since (T kM) by construction respects the Lie bracket in the sense of Subsection 1.1.3, that

bracket induces a Levi bracket

L : gr(TM)× gr(TM)→ gr(TM).

This map has, up to symmetry of arguments, two nontrivial components, namely, gr−1× gr−1→ gr−2

gr−1× gr−2→ gr−3 .
.

Since L is skew-symmetric, the first descends to a map

Λ2D→ [D,D]/D

and the second is a map

D⊗ ([D,D]/D)→ TM/[D,D].

For both of these, genericity guarantees that the domain and codomain have the same

dimension, so both are vector bundle isomorphisms.

We say that D is orientable if it is orientable as a bundle, that is, if Λ2D admits a

nonvanishing global section. (Using the first Levi bracket isomorphism above shows that

this is equivalent to [D,D]/D admitting a nonvanishing global section.)
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Proposition 1.5.3. A generic 2-plane field D on a 5-manifold M is orientable iff M is,

and an orientation on either D or TM determines an orientation on the other.

This proposition is stated in [HS09] but not proven there.

Proof. Consider a local frame (X,Y ) spanning the restriction of D to some open set U ⊆M .

Since D is generic,

ΨU (X,Y ) := X ∧ Y ∧ [X,Y ] ∧ [X, [X,Y ]] ∧ [Y, [X,Y ]] ∈ Γ(Λ5TM |U )

vanishes nowhere and so determines an orientation on U . Any other frame of D|U can be

written as (aX + bY, cX + dY ) for some a b

c d

 ∈ C∞(U,GL(2,R)),

and computing directly shows that

ΨU (aX + bY, cX + dY ) =

det

 a b

c d

5

ΨU (X,Y ).

So, if two frames determine the same orientation on D|U , so that the determinant of the

matrix function relating them is everywhere positive, then their images under ΨU determine

the same orientation on U , that is, ΨU descends to a map (which we also denote ΨU )

from orientations on D|U to orientations on U . Moreover, if two frames determine opposite

orientations, so that the determinant is instead everywhere negative, their images determine

opposite orientations on U , and hence ΨU is bijective.

Now, by construction, for any collection of open subsets Ui ⊆M satisfying the hypothe-

ses of U above, the maps ΨUi respectively send orientations of D|Ui that agree on their

overlaps to orientations of Ui that agree on their overlaps. In particular, if the full 2-plane

field D is orientable, cover M with subsets Ui; the induced orientations on D|Ui agree on

their overlaps, and so their respective images under ΨUi together define an orientation on

M . Conversely, applying this argument instead to the respective images of orientations on

Ui under Ψ−1
Ui

shows that if M is orientable, then so is D.
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Recall that generic 2-plane fields on oriented 5-manifolds D can be encoded uniquely as

(normal, regular) parabolic geometries (E,ω) of type (g2, P ). In the representation of g2

given by (1.49), we may write the Cartan connection ω as



−(ϕ1 + ϕ4) ϕ8 ϕ9 − 1√
3
ϕ7 1

2
√

3
ϕ5 1

2
√

3
ϕ6 0

θ1 ϕ1 ϕ2 1√
3
θ4 − 1

2
√

3
θ3 0 1

2
√

3
ϕ6

θ2 ϕ3 ϕ4 1√
3
θ5 0 − 1

2
√

3
θ3 − 1

2
√

3
ϕ5

θ3 ϕ5 ϕ6 0 1√
3
θ5 − 1√

3
θ4 − 1√

3
ϕ7

θ4 ϕ7 0 ϕ6 −θ4 ϕ2 −ϕ9

θ5 0 ϕ7 −ϕ5 θ3 −ϕ1 ϕ8

0 θ5 −θ4 θ3 −θ2 θ1 ϕ1 + ϕ4


. (1.54)

The grading on g2 shows that the partial frame (θa), a ∈ {1, . . . , 5} pulls back via an

arbitrary local section of E → M to a local frame on M , which we denote (θ̄a), and it is

adapted to D in the sense that

D = ker{θ̄1, θ̄2, θ̄3} and [D,D] = ker{θ̄1, θ̄2}.

The curvature Ω = dω + ω ∧ ω of the Cartan connection ω has the form



0 Φ8 Φ9 1√
3
Φ7 1

2
√

3
Φ5 1

2
√

3
Φ6 0

0 Φ1 Φ2 0 0 0 1
2
√

3
Φ6

0 −Φ3 −Φ1 0 0 0 − 1
2
√

3
Φ5

0 Φ5 Φ6 0 0 0 1√
3
Φ7

0 −Φ7 0 Φ6 Φ1 Φ2 −Φ9

0 0 −Φ7 −Φ5 −Φ3 −Φ1 Φ8

0 0 0 0 0 0 0


, (1.55)
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where 

Φ1

Φ2

Φ3

Φ5

Φ6

Φ7


=



C2 B2 B3 A2 A3 A3 A4

C3 B3 B4 A3 A4 A4 A5

C1 B1 B2 A1 A2 A2 A3

D1 2C1 2C2 B1 B2 B2 B3

D2 2C2 2C3 B2 B2 B3 B4

E D1 D2 C1 C2 C2 C3





θ1 ∧ θ2

θ1 ∧ θ3

θ2 ∧ θ3

θ1 ∧ θ4

θ1 ∧ θ5

θ2 ∧ θ4

θ2 ∧ θ5


(1.56)

and Φ8 and Φ9 satisfy additional equations that we will not need. (This is taken from

[Nur05], though some of the matrix components of the representation of g2 there differ from

those in the representation (1.49) by constant factors, as do the coefficients Ai, Bi, Ci, Di,

E in (1.56).)

1.5.2 ODE realization of the geometry and a quasi-normal form

Consider ordinary differential equations of the form

z′ = F (x, y, y′, y′′, z), (1.57)

where F is some function on an open subset of R5, and y and z are functions of x. We

may realize such equations geometrically using the standard machinery of the geometry of

differential equations as follows [Nur05]: First denote p := y′ and q := y′′, so that R5 denotes

xypqz-space. For any smooth functions y and z, the graph of the prolongation (x, y, y′, y′′, z)

is tangent everywhere to the tautological 3-plane field defined by the conditions

dy − p dx = 0

dp− q dx = 0.

Any solution to (1.57) must satisfy an additional equation determined by F ; explicitly, the

prolonged solution (x(t), y(t), y′(t), y′′(t), z(t)) must be tangent to the field DF defined by

dz − F dx = 0

dy − p dx = 0

dp− q dx = 0.
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The 1-forms on the left-hand sides are linearly independent, so DF has constant rank 2.

The vector fields ∂q and D := ∂x + p∂y + q∂p +F∂z are linearly independent and annihilate

those 1-forms, so together they span DF everywhere.

Now, computing gives

[∂q, D] = ∂p + Fq∂z,

which is annihilated by the 1-form dy − p dx and the linear combination

(dz − F dx)− Fq(dp− q dx)

of the defining forms. So, [D,D] is the common kernel of those two forms.

Proposition 1.5.4. Let F be a real-valued function on an open subset of R5. The field DF

is generic iff Fqq is nonvanishing.

Proof. Computing gives

[∂q, [∂q, D]] = Fqq∂z

[D, [∂q, D]] = −∂y + (DFq − [∂q, D]F )∂z.

Evaluating gives

(dx ∧ dy ∧ dp ∧ dq ∧ dz)(∂q ∧D ∧ [∂q, D] ∧ [∂q, [∂q, D]] ∧ [D, [∂q, D]]) = −Fqq,

so the set

{∂q, D, [∂q, D], [∂q, [∂q, D]], [D, [∂q, D]]}

spans TM and hence the plane field DF is generic iff Fqq vanishes nowhere.

Remark 1.5.5. Cartan studied exhaustively in [Car15] the ordinary differential equations

(1.57) for which Fqq = 0.

The following proposition of Bryant and Hsu (following Cartan) shows that, locally,

all D are induced by functions F as above, defining a local quasi-normal form for generic

2-plane fields on 5-manifolds. It is possible for distinct functions F and F to yield locally

equivalent 2-plane fields, that is, for a pair (F, F̄ ) to admit a local diffeomorphism φ such

that DF̄ = Tφ · DF , and so the quasi-normal form is not strictly normal.
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Proposition 1.5.6. [BH93, Section 2] Let D be a generic 2-plane field on a 5-manifold

M . For every point s ∈M there are local coordinates (x, y, p, q, z) on some neighborhood U

mapping s to the origin and a function F ∈ Γ(C∞(U)) such that D|U= DF .

Example 1.5.7. The plane field DF induced by F (x, y, p, q, z) = q2 is locally equivalent to

the plane fields of the orientable model in Subsection 1.4.2 [Nur05, Section 5.3].

1.5.3 Nurowski’s canonical conformal structure

Recall the following construction of the model geometry of conformal geometry of signature

(p, q): Let 〈·, ·〉 be a nondegenerate, symmetric bilinear form of signature (p + 1, q + 1) on

Rp+1,q+1, let N be its null cone,

N := {X ∈ Rp+1,q+1 − {0} : 〈X,X〉 = 0},

and let R be the ray space, that is, the space of null (open) rays in Rp+1,q+1. The projection

π : N → R and the dilations δs : N → N , s > 0, defined by δs(X) := sX, realize N as

a R+-principal bundle over R. Pulling back the standard metric (the one induced via the

canonical identifications TxRp+1,q+1 ↔ Rp+1,q+1, x ∈ Rp+1,q+1) by an arbitrary section of

g ∈ Γ(N → R) defines a metric, which we also denote g, on R. By construction, any

other section (metric) is a nonvanishing C∞(R) multiple of g, so 〈·, ·〉 induces the natural

conformal structure cR := [g] on R. By construction π : N → R is the metric bundle of c,

and δs coincides with the so-named dilations in Subsection 1.2.3. One can show that (R, cR)

coincides with the model geometry of the parabolic geometry of type (o(p + 1, q + 1), Ṗ )

discussed in Examples 1.1.7 and 1.1.21 [Sha97].

Now, taking 〈·, ·〉 to be the bilinear form on Im Õ defined in Subsection 1.4.1 yields a

conformal class on the space of the oriented model (R,DR) of generic 2-plane fields on

5-manifolds described in Subsection 1.4.2. Nurowski showed that, remarkably, one can gen-

eralize this construction and canonically assign to a generic 2-plane field D on a 5-manifold a

conformal class cD on M [Nur05]. We can see this efficiently using the language of parabolic

geometries. First, assume that M is orientable; recall again that we can canonically en-

code such a field D as a (normal, regular) parabolic geometry (E,ω) of type (g2, P ). Since
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P = G2 ∩Ṗ , where Ṗ is the stabilizer in O(3, 4) of a null ray, G2/P is canonically isomorphic

to O(3, 4)/Ṗ , and differentiating gives that g2/p is canonically isomorphic to o(p+1, q+1)/ṗ.

Define the Ṗ -principal bundle

Ė := E ×P Ṗ ;

then, we may uniquely extend ω (which takes values in g2) by Ṗ -equivariance to an o(p +

1, q + 1)-valued form ω̇ on Ė. By equivariance, (Ė, ω̇) is a parabolic geometry of type

o(p + 1, q + 1, Ṗ ) and so it defines a conformal structure on M . (One can furthermore

show [HS09, Proposition 4] that ω̇ is in fact the normal Cartan connection associated to

that structure.) Since ω̇ extends ω by Ṗ -equivariance, the curvature Ω̇ of ω̇ extends the

curvature Ω of ω by equivariance.

The construction of this conformal structure is local and does not depend on the orienta-

tion of the underlying manifold; so for a generic 2-plane field on a nonorientable 5-manifold

M , we may use it to define conformal structures on the sets in an open cover of M by

orientable sets, and these patch together to define a global conformal structure.

We henceforth refer to a conformal structure induced by a generic 2-plane field in this

way (whether the underlying manifold is oriented or note) as a Nurowski conformal

structure.

Consulting the bilinear form (1.50) corresponding to the representation (1.49) shows the

representative metric g ∈ cD determined by the section σ is just −2θ̄1θ̄5 + 2θ̄2θ̄4− (θ̄3)2 (see

(1.54) and the paragraph following it for the definition of the frame (θ̄a)).

Proposition 1.5.8. For any generic 2-plane field D, and with respect to the induced con-

formal structure cD, D is totally null (that is, D ⊂ D⊥) and [D,D] = D⊥.

We will invoke the latter equality regularly (even without explicit reference to the induced

conformal structure), and without comment.

Proof. These facts follow immediately and respectively from the above formula of the rep-

resentative metric in terms of (θ̄a) and the adaptation of that coframe to D.

We can use the induced conformal structure of a generic 2-plane field on a 5-manifold

to produce various natural isomorphisms; we use them in the construction of the Cartan
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curvature tensor A ∈ Γ(S4D∗) (see Subsection 1.5.4 below).

Lemma 1.5.9. Let D be a generic 2-plane field on a 5-manifold M . There is a natural

isomorphism ψ : (TM/D⊥)[−1]
∼=→ D∗[1]. An orientation on M induces a natural isomor-

phism µ : D
∼=→ D⊥[−1], and composing these gives a natural isomorphism τ := ψ ◦ µ : D→

(TM/D⊥)[−1].

Proof. That D is totally null has two relevant consequences: First, lowering an index with

g descends to a map ψ : (TM/D⊥)[−1]→ D∗[1], and by construction it is an isomorphism.

Second, g defines a negative definite weighted fiber metric (which we also denote g) on

D⊥/D, that is, a section of (S2(D⊥/D)∗)[2]. If M is oriented, by Proposition 1.5.3 so is

D. Then, via the Levi bracket (defined in Subsection 1.5.1), this determines an orientation

on D⊥/D and thus on the weighted bundle (D⊥/D)[−1], and then lowering an index with

the induced bilinear form g determines an orientation on (D⊥/D)∗[1]. Since the lattermost

bundle has rank 1, there is a unique positively oriented section α ∈ Γ((D⊥/D)∗[1]) that

satisfies g−1(α, α) = −3
4 . (This constant is chosen so that τ has a simple formula in terms

of local frames of TM that we produce later.) Then, define the map µ : D
∼=→ D∗[1] by

µ(X) := α(L(X ∧ ·)),

or equivalently,

µ(X)(Y ) := α([X,Y ] + D).

It is an isomorphism because (again) the component Λ2D
∼=→ D⊥/D of the Levi bracket

is.

By construction, reversing the orientation of M replaces µ and τ with their negatives.

Recall from Subsection 1.5.2 that any function F (x, y, p, q, z) for which Fqq is non-

vanishing determines a generic 2-plane field DF on a 5-manifold. Nurowski computed a

(formidable) formula, recorded here as (A.1) in Appendix A.1, for a representative gF of

the conformal structure cF := cDF it induces. In particular, gF is polynomial in F and

derivatives of F of order no more than 4, and so if F is real-analytic, so is gF and hence so

is cF . Computing directly shows that the determinant of the matrix of gF in the basis (ω̃a)
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(also defined in that appendix) is a real multiple of F 18
qq , and so (gF )−1 is polynomial in F ,

derivatives of F of order no more than 4, and F−1
qq .

Example 1.5.10. [Nur05, Example 6], [Nur08b, Section 3] Suppose F depends on q = y′′

alone, so that the corresponding differential equation is just z′ = F (y′′). Then, cF contains

the Ricci-flat representative e2ΥgF , where Υ(q) satisfies an explicit second-order ordinary

differential equation.

1.5.4 Cartan fundamental curvature tensor

To any generic 2-plane field D on an oriented 5-manifold one can associate the curvature Ω of

the corresponding normal, regular parabolic geometry (E,ω) of type (g2, P ). The essential

component of Ω is the Cartan curvature tensor A ∈ Γ(S4D∗) defined below [Car10]. Its

role in the geometry of generic 2-plane fields on 5-manifolds is similar to that of Weyl

curvature in conformal geometry in dimension n ≥ 4: Among other reasons, it is precisely

the obstruction to local flatness. In fact, below we derive A from the Weyl curvature of the

induced conformal class cD and extend the definition of A to fields on general 5-manifolds.

Let D be an oriented, generic 2-plane field on a 5-manifold, consider the induced con-

formal class cD on M , and let (E,ω) and (Ė, ω̇) respectively be the corresponding normal,

regular parabolic geometries of types (g2, P ) and (o(p+1, q+1), Ṗ ); recall that Ė = E×P Ṗ

and that ω̇ is just given by extending ω to Ė by equivariance. Coerce an arbitrary section

σ ∈ Γ(E) into a section σ̇ ∈ Γ(Ė) = Γ(E ×P Ṗ ) by setting σ̇(x) := [σ(x), id] and let g ∈ cD
be the representative metric determined by σ̇ as in Example 1.1.21. Now, the representation

(1.49) of g2 corresponds in the sense of Subsection 1.4.1 to a bilinear form on R3,4 of the

form (1.15), so consulting (1.17) lets us identify the Weyl curvature W of g as the piece of

the Cartan curvature Ω̇ taking values in o(h). Since σ̇ and Ω̇ respectively extend σ and Ω
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by Ṗ -equivariance, σ̇∗Ω̇ = σ∗Ω, which is given by (1.55). Explicitly, we have

1
2Ω c

ab dθ̄
a ∧ θ̄b =



Φ1 Φ2 0 0 0

−Φ3 −Φ1 0 0 0

Φ5 Φ6 0 0 0

−Φ7 0 Φ6 Φ1 Φ2

0 −Φ7 −Φ5 −Φ3 Φ1


Lowering an index using g gives

1
2Ωabcdθ̄

a ∧ θ̄b =



0 Φ7 Φ5 Φ3 Φ1

−Φ7 0 Φ6 Φ1 Φ2

−Φ5 −Φ6 0 0 0

−Φ3 −Φ1 0 0 0

−Φ1 −Φ2 0 0 0


. (1.58)

By construction, pulling back Ωabcd via σ just gives the Weyl curvature Wabcd of g.

Lemma 1.5.11. Let D be a generic 2-plane field on an oriented 5-manifold. The Weyl

tensor of the induced conformal structure cD satisfies W (·, ·, X, Y ) = 0 for all X,Y ∈ Γ(D⊥).

Proof. The field D⊥ is exactly the common kernel of θ̄1 and θ̄2; consulting (1.58) shows that

Wabcdθ̄
a ∧ θ̄b = 0 for c, d ≥ 3, giving the claim.

We are now prepared to define the Cartan curvature tensor A of a generic 2-plane field D

on an 5-manifold M . First, suppose that M oriented. The Weyl curvature W has conformal

weight 2, that is, we may regard it as a section of (
⊗4 T ∗M)[2]. Then, define A ∈ Γ(

⊗4 D∗)

by

A(Z1, Z2, Z3, Z4) := W (Z1, τ(Z2), Z3, τ(Z4)),

where τ : D → (TM/D⊥)[−1] is the isomorphism defined in Lemma 1.5.9 and where we

regard τ(Z2) and τ(Z4) as arbitrary representatives of those cosets in TM [−1]. By the

previous lemma, A is independent of the choice of those representatives. Since W has

conformal weight 2 and each argument τ(Z•) has conformal weight −1, A has conformal

weight 0 as indicated. Reversing the orientation of M replaces τ with its negative, but
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because τ occurs precisely twice in the definition, A is independent of the orientation of M .

It moreover depends only on local data, so we may define it for D on nonorientable M , too,

by defining it locally and patching as we did to define cD for generic 2-plane fields D on

nonorientable 5-manifolds.

Proposition 1.5.12. The tensor A is totally symmetric (for every generic 2-plane field D

on a 5-manifold M), that is, we may regard A as a section of S4D∗.

Proof. Consider a local section σ of E → M , let (θ̄a) be the induced pullback coframe

on M , let (Xa) denote the dual frame, and let g ∈ c denote the induced representative

−2θ̄1θ̄5 + 2θ̄2θ̄4 − (θ̄3)2. Using g, we may freely identify weighted and unweighted sections.

By construction, D is locally spanned by X4 and X5, and D⊥ is locally spanned by X3, X4,

and X5. Then, lowering an index gives that the isomorphism ψ : D∗[1]→ (TM/D⊥)[−1] in

the proof of Lemma 1.5.9 is characterized by ψ(θ4|D) = X2 + D⊥

ψ(θ5|D) = −X1 + D
,

where we may use g to regard unweighted sections as weighted sections of the indicated

bundles. Now, since θ̄3 annihilates D, it descends to a section of (TM/D)∗, and restricting

it, we may regard it as a section of (D⊥/D)∗ or (D⊥/D)∗[1] (we denote this resulting section

by θ̄3 too). Then,
√

3
2 θ̄

3 satisfies g−1(θ3, θ3) = −3
4 , so for the appropriate orientation on

the domain of σ, we may choose that form for α in the proof of Lemma 1.5.9. Using the

definition of µ gives

µ(X4)(X5) = α([X4, X5] + D)

=
√

3
2 θ̄

3([X4, X5])

=
√

3
2 [−dθ̄3(X4, X5) +X4(θ̄3(X5))−X5(θ̄3(X4))].

The last two terms in brackets vanish because (θ̄a) and (Xa) are dual bases. Then, using

(1.54) and (1.55) and comparing the 0
3 components of the definition Ω = dω + ω ∧ ω gives

dθ3 = − 2√
3
θ4 ∧ θ5, so substituting gives

µ(X4)(X5) = −(θ4 ∧ θ5)(X4, X5) = −1.
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Since µ is antisymmetric by definition, this computation completely characterizes µ, giving µ(X4) = −θ5|D
µ(X5) = θ4|D

.

Then, composing gives that the isomorphism τ = ψ ◦ µ is characterized by τ(X4) = X1 + D⊥

τ(X5) = X2 + D⊥
.

Then, checking in the basis {X4, X5} of D, which involves consulting the Weyl curvature

1.58, shows that A is fully symmetric.

Remark 1.5.13. By construction, the coefficients of A in the frame of S4D∗ induced by the

coframe (θ4|D, θ5|D) are just the coefficients A1, . . . , A5 in (1.56).

Remark 1.5.14. One can show that if A vanishes for a given D, then the full curvature Ω

of the corresponding normal, regular parabolic geometry vanishes; so, A = 0 iff D is locally

flat. [Car10]

1.6 Holonomy

1.6.1 Pseudo-Riemannian holonomy

The holonomy of a pseudo-Riemannian manifold (N,h) is a group that measures the failure

of parallel transport around closed loops (by the Levi-Civita connection ∇h of h) to preserve

geometric data; for the general material in this section, we partially follow [Pet06]. For any

piecewise smooth curve γ : [0, 1] → N based at x ∈ N , parallel transport along γ with

respect to ∇h defines a linear map Pγ : Tγ(0)N → Tγ(1)N ; if γ is moreover a loop based at x,

then Pγ is a map TxN → TxN . By construction, parallel transport Pγ−1 along the reverse

loop γ−1 satisfies P−1
γ Pγ = id, so Pγ ∈ GL(TxN). In fact, since the metric is parallel with

respect to the Levi-Civita connection by definition of the latter, Pγ preserves lengths and

hence Pγ ∈ O(TxN).

Definition 1.6.1. The holonomy (group) of the pseudo-Riemannian manifold (N,h)

based at x ∈M is the group

Holx(N,h) := {Pγ : γ ∈ Ωx(N)} ≤ O(TxN), (1.59)



83

where Ωx(N) denotes the space of (piecewise-smooth) loops in N based at x.

Note that the holonomy is indeed a group because it is closed under composition: Pγ·γ′ =

Pγ′Pγ , where · denotes concatenation. Picking an pseudo-orthonormal basis of a tangent

space TxN realizes Holx(N,h) as an explicit subgroup of O(p, q) and any other choice yields a

conjugate subgroup, so without reference to bases we may regard Holx(N,h) as a conjugacy

class of subgroups of O(p, q). Moreover, given a path α from x to y in N , we have by

construction that

Holy(N,h) = Pα Holx(N,h)Pα−1 .

Picking pseudo-orthonormal bases of TxN and TyN and applying this identity shows that

the conjugacy class of Holx(N,h) in O(p, q) is also independent of the base point x. So,

for path-connected manifolds, we may unambiguously refer to that conjugacy class as the

holonomy Hol(N,h) (or Hol(h)) of (N,h).

Similarly, the restricted holonomy (group) of (N,h) based at x ∈M is the subgroup

Hol0(N,h) ≤ Hol(N,h) defined by

Holx(N,h) := {Pγ : γ ∈ Ω0
x(N)} ≤ O(TxN),

where Ω0
x(N) denotes the space of (piecewise-smooth) contractible loops based at x. As

above, we may identify it with a conjugacy class of subgroups in O(p, q) (in fact, of its

identity component, SO+(p, q)), and this identification is independent of the base point x,

so we may again suppress the base point in the notation.

Directly applying the definition of holonomy to a product manifold

(N1, h1)× (N2, h2) gives the product identity

Hol(x1,x2)(N1 ×N2, h1 ⊕ h2) = Holx1(N1, h1)×Holx2(N2, h2), (1.60)

so any factorization of a pseudo-Riemannian manifold into a Cartesian product is reflected

in a decomposition of the holonomy.

Let (N,h) be a pseudo-Riemannian manifold, fix arbitrary x ∈ N , and let TxN =⊕
k Ek be a decomposition of TxN into Holx(N,h)-submodules. Since parallel translation

along loops based at x preserves this decomposition by definition, parallel transport of the
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subspaces Ek defines respective parallel plane fields ηk and thus a global decomposition

TM =
⊕

ηk

into parallel plane fields. Because they are parallel, they are necessarily integrable. The

following theorem says that such a decomposition can be used to factor (N,h) at least

locally as a pseudo-Riemannian product manifold.

Theorem 1.6.2 (de Rham Decomposition). Let (N,h) be a pseudo-Riemannian manifold

and let TN =
⊕

k ηk be a decomposition of TN into indecomposable Holx(N,h)-submodules.

Then, any point x ∈ N admits a neighborhood U with product structure

(U, h|U ) =

(∏
k

Uk,
∑
k

hk

)
such that TUk = ηk|Uk . By construction, the holonomy group Hol•(Uk, hk) of every factor

acts indecomposably on T•Uk, respectively.

Remark 1.6.3. de Rham proved this result for definite signature [dR52] and Wu for arbitrary

signature [Wu64]. The form of this theorem given here is that of [Pet06, Theorem 56] (except

the statement there also points out ifN is simply connected and complete, the decomposition

can in fact be taken to be global). The critical difference between the definite- and indefinite-

signature cases is that the action of the holonomy group on the tangent space at a point

of a Riemannian manifold decomposes that space into direct sum of irreducible modules,

whereas for a general pseudo-Riemannian manifold, not all indecomposable modules of the

holonomy group need be irreducible.

The general-signature version of Berger’s Theorem imposes strong restrictions on the

groups that can occur as the holonomy of a simply-connected pseudo-Riemannian manifold

that is not locally symmetric.

Theorem 1.6.4 (Berger’s List). Let (N,h) be a simply connected pseudo-Riemannian n-

manifold that is not a locally symmetric space. If Holx(N,h) acts irreducibly on TxN , then

up to isomorphism it is one of the following.

• If h has definite signature (n, 0), Hol(N,h) is one of the following: SO(n), U(n2 ),

SU(n2 ), Sp(n4 ) · Sp(1), Sp(n4 ), Gc
2 (see Subsection 1.4.1), Spin(7).
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• If h has indefinite signature (p, q), Hol(N,h) is one of the following: SO(p, q), U(p2 ,
q
2),

SU(p2 ,
q
2), Sp(p4 ,

q
4) · Sp(1), Sp(p4 ,

q
4), G2, Spin(3, 4), SO(n,C), GC

2 , Spin(7,C).

Remark 1.6.5. Berger’s original list contained several additional possible groups, in both

the definite- and indefinite-signature cases, which have since been shown to occur only for

symmetric spaces. By contrast, all groups given in the theorem as given here have been

realized as the holonomy groups of concrete pseudo-Riemannian manifolds that are not

symmetric spaces.

Because holonomy measures the failure of parallel transport to preserve geometric objects

on a pseudo-Riemannian manifold, a manifold with special holonomy (that is, holonomy

other than SO(p, q)) necessarily admits some parallel structure.

For a Lie group G ≤ GL(n,R), a G-structure on an n-manifold N is a reduction of

TN to G, that is, a subbundle E of the frame bundle F of TN whose fiber Ex at x ∈ N

consists of a G-orbit of frames in Fx. A G-structure E is parallel if it is invariant under

parallel translation, that is, if for any γ ∈ Ωx(N) (say, with γ(1) = y) and any (Xa) ∈ Ex

we have (PγXa) ∈ Ey, where Pγ is parallel translation along γ.

Proposition 1.6.6. If the holonomy of a pseudo-Riemannian manifold (N,h) of signature

(p, q) is contained in some Lie group G < O(p, q), then h admits a parallel G-structure.

The main application of Theorem 2.1.2 in this work regards metrics of holonomy con-

tained in G2 (see Subsection 1.6.3 and Section 3.1); we record some specialized results about

such holonomy here.

Theorem 1.6.7 (Bonan’s Theorem). [Bon66] Any manifold with holonomy contained in

G2 is Ricci-flat.

Lemma 1.6.8. Given a 7-dimensional pseudo-Riemannian manifold (N,h), the holonomy

group Hol•(N,h) is contained in G2 < SO(h) (which requires that N be orientable) iff h

admits a parallel 3-form Φ of split type compatible with the metric in the sense that, up to

a constant factor

(·yΦ) ∧ (·yΦ) ∧ Φ = h volh .
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Proof. (⇒) If Hol(N,h) ≤ G2 < SO(h), then by Proposition 1.6.6 (N,h) admits a parallel

G2-structure. By the characterization of G2 in Subsection 1.4.1, the fiber of that G2-

structure over any point x ∈M can be regarded as the set of frames in which the coordinate

representation of some generic 3-form φx ∈ Λ3T ∗xM is given by a fixed split type (generic)

3-form on R7 compatible with the metric on that space, for example, the Φ on Im Õ ∼= R7

with the metric 〈·, ·〉 defined in Subsection 1.4.1, for an appropriate isomorphism. Since

the G2-structure is parallel, φx extends to a parallel local 3-form φ on M such that fiber

of the G2-structure over any point y again comprises the frames with respect to which φy

has the coordinate representation of the fixed 3-form on Im Õ. Patching these local 3-forms

together gives a global parallel 3-form of split type, and it is compatible with the metric

since Φ is compatible with 〈·, ·〉.

(⇐) If (N,h) admits a parallel 3-form of split type compatible with the metric in the above

sense, its holonomy is contained in the stabilizer in GL(7,R) of a 3-form of split type on

R7, namely, G2.

We can realize G2 in an alternate way, namely as the stabilizer in Spin+(3, 4) (the

connected component of the identity of Spin(3, 4)) of a nonisotropic (that is, non-null)

spinor ψ ∈ ∆3,4
∼= R8 [Kat98, Corollary 2.1]. This gives the following:

Proposition 1.6.9. If a pseudo-Riemannian manifold (N,h) admits a nonisotropic spinor

ψ, that is a section of the spin bundle associated to ∆3,4, parallel with respect to the induced

spin connection, then Hol(N,h) is contained in G2.

We can canonically assign a 3-form in Λ3(R3,4)∗ to any nonisotropic spinor ψ ∈ ∆3,4:

For such a spinor, the map R3,4 7→ {ϕ}⊥ ⊂ ∆3,4 defined by X 7→ X ·ψ is an isomorphism (if

ψ is null instead, the map has nullity 3), and so passing to bundles we may define a bundle

map × : TN ⊗ TN → TN (that is, (2, 1)-tensor) by

Y Xψ + h(X,Y )ψ = (X × Y )ψ.

Checking shows that that lowering an index of × gives a 3-form Φ of split type [Kat98]. By

construction, if ψ is parallel with respect to the induced spin connection, Φ is parallel with

respect to ∇h.



87

1.6.2 Normal conformal and ambient holonomy

We may likewise define the holonomy for a general connection ∇E : Γ(E) → Γ(E ⊗ T ∗N)

on a vector bundle E → N , which induces parallel transport maps Pγ analogous to the one

defined above. For any curve γ : [0, 1] → N , a local section s of E is parallel along γ if

∇γ′(t)s = 0. This equation is a first-order, linear ordinary differential equation, so define

the parallel transport map Pγ : Eγ(0) → Eγ(1) to be (linear) map that sends X ∈ Eγ(0) to

s(γ(1)), where s is the unique solution to ∇γ′(t)s = 0 satisfying s(γ(0)) = X. By the same

arguments in Subsection 1.6.1, if γ is a loop based at x ∈ N , then Pγ is in GL(Ex).

Definition 1.6.10. The holonomy (group) of the connection ∇E is the group

Holx(∇E) := {Pγ : γ ∈ Ωx(M)} ≤ GL(Ex),

Specializing E to TN and ∇E to the Levi-Civita connection ∇h of a metric h on N

recovers the notion of holonomy defined in Subsection 1.6.1.

Taking E to be the tractor bundle T defines a natural notion of holonomy for conformal

structures.

Definition 1.6.11. The normal conformal holonomy (group) of the conformal struc-

ture (M, c) is the holonomy Hol(∇T ) of the standard tractor connection.

One can show that this agrees with the standard definition of this group: Let (E →M,ω)

be the parabolic geometry of type (o(p+1, q+1), Ṗ ). Then, the normal conformal holonomy

is just the holonomy of the principal connection on the O(p + 1, q + 1)-principal bundle

E ×Ṗ O(p+ 1, q + 1)→M defined by extending ω by equivariance.

By construction, the tractor metric gT of a conformal structure (M, c) of signature, say,

(p, q), has signature (p + 1, q + 1) and is ∇T -parallel, so ∇T preserves lengths, and hence

Hol(∇T ) ≤ O(p+ 1, q + 1).

Since the tractor connection of a conformal structure (M, c) is essentially given by re-

stricting the connection ∇̃ of any ambient metric (M̃, g̃) of c to G ⊂ M̃ , and any loop in G

is also a loop in M̃ , we always have Hol(∇T ) ≤ Hol(∇̃).

The following equality result for Einstein conformal structures can be found in [Lei04]

(for Einstein constant λ 6= 0) and [Lei05] (λ = 0).
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Proposition 1.6.12. If c is conformally Einstein, Hol(∇T ) = Hol(∇̃can), where ∇̃can is

the Levi-Civita connection of the canonical ambient metric g̃can (1.21) of any Einstein rep-

resentative of c.

1.6.3 Leistner and Nurowski’s examples

We may associate to any generic 2-plane field D on a 5-manifold the normal conformal

holonomy Hol(cD), which again we may identify with its tractor holonomy Hol(∇T ). Recall

that if D is real-analytic, then so is cD, and thus by the discussion in Subsection 1.6.2 we may

investigate the holonomy Hol(g̃D) of a real-analytic ambient metric g̃D of cD. In principle,

the holonomy may depend on the choice of metric g̃D, but we will always be able to restrict

the metric to some homogeneous domain so that the relevant results apply. Recall from

Subsection 1.5.2 that any function F (x, y, p, q, z) for which Fqq is nonvanishing determines

a generic 2-plane field DF , and that any plane field D can be locally realized as a plane field

DF for some such F . Then, if F is real-analytic, by the observation in 1.5.3 so is cDF , so

the above yields a construction F  Hol(g̃DF ). Summarizing, the chain of constructions is

F 7→ DF 7→ cF 7→ g̃F 7→ Hol(g̃F ),

where we denote cF := cDF and g̃F := g̃DF .

Strikingly, Leistner and Nurowski exhibited an eight-parameter class of (real-analytic)

functions F for which the ambient holonomy of g̃F is equal to G2. This result in large part

motivated the investigation of what became the primary application in this work, namely,

the relationship between general real-analytic local fields D and G2 holonomy.

Example 1.6.13. [LN10, Theorem 1] Define for a = (a0, . . . , a6) ∈ R7 and b ∈ R the function

F [a, b] by

F [a, b](x, y, p, q, z) = q2 + a0 + a1p+ a2p
2 + a3p

3 + a4p
4 + a5p

5 + a6p
6 + bz.

If at least one of a3, a4, a5, or a6 is nonzero, then, Hol(g̃F [a,b]) = G2.

Remarkably, for any a and b, the conformal class cF [a,b] admits a representative ĝ such

that in normal form with respect to that representative the real-analytic ambient metric
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g̃F [a,b] is given a by second-order polynomial in ρ:

g̃F [a,b] := 2ρ dt2 + 2t dt dρ+ t2(ĝ + 2Pρ+ t2Bρ2),

where P and B respectively are the Schouten and Bach tensors. As usual, we suppress

pullback notation.

We outline here Leistner and Nurowski’s proof that Hol(g̃F [a,b]) = G2 for the values of

(a, b) given in 1.6.13. First, they construct an explicit nonisotropic spinor on the ambient

space parallel with respect to the spin connection induced by the Levi-Civita connection ∇̃

of g̃F [a,b], and so Proposition 1.6.9 shows that the holonomy of each such metric is contained

in G2. To show that the holonomy is equal to G2, they eliminate the other possibilities.

Proposition 1.6.14. Suppose a simply-connected, signature-(3, 4) pseudo-Riemannian man-

ifold (N,h) has holonomy contained in G2. Then, at least one of the following holds:

• h is locally symmetric, that is, ∇hR = 0

• h admits a parallel line field in a neighborhood of every point

• h admits a parallel, totally null 2-plane field

• Hol(h) = G2

Proof. Fix an arbitrary point x ∈ N . If Hol(h) acts irreducibly on TxN , then by Berger’s

List (Theorem 1.6.4), either Hol(h) = G2 or h is locally symmetric. So henceforth suppose

Hol(h) acts reducibly, say, that it preserves the proper subspace V ⊂ TxM . Since dimTxN =

7, by replacing V with V ⊥ if necessary, we may assume dimV ≤ 3.

First assume that V is nondegenerate, so that V ∩ V ⊥ = {0}. Then, by the de Rham

theorem, N can be factored in some neighborhood of x as a nontrivial product (N1, h1) ×

(N2, h2), say, with dimN1 ≤ 3. By Bonan’s Theorem (Theorem 1.6.7), h is Ricci-flat, and

thus so are h1 and h2. Since dimN1 ≤ 3, h1 is actually flat and thus admits a parallel vector

field. Hence, its span is a parallel local line field on N near x.

Now assume that V is degenerate. If dimV = 1 or dimV = 2, then V itself is a parallel

null line or 2-plane field, respectively. Now suppose dimV = 3; in this case [Kat98,Kop97]
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give that there is a line of pure null spinors parallel with respect to the spin connection

induced by h. Let Φ denote a parallel 3-form stabilized by G2 compatible with the metric

h in the sense that, up to a constant factor,

(·yΦ) ∧ (·yΦ) ∧yΦ = h volh .

Let ψ be the spinor field that corresponds to Φ. Then, for any nonvanishing local section ζ

of the line of null spinors, define the vector field V by transposing Clifford multiplication,

that is, by

h(V, Y ) = 〈Y · ψ, ζ〉 ,

where 〈·, ·〉 is the metric on the spin bundle. By construction, scaling ζ scales V , so this

transposition defines a parallel local line field. (In fact, these local fields agree on their

overlap, defining a parallel global line field.)

To eliminate the first three possibilities for the metrics indicated in Example 1.6.13,

Leistner and Nurowski [LN10] proved the following technical result (which combines the

statements of several results in that article).

Lemma 1.6.15. Let D be a real-analytic, oriented, generic 2-plane field on a 5-manifold

M , and let (M̃, g̃D) be the real-analytic ambient manifold of the induced conformal structure

cD. Then,

• If g̃D admits a parallel line field, then there is a dense subset U ⊆ M such that cD|U

is locally Einstein.

• If g̃D admits a parallel, totally null 2-plane field, then for any point there is a repre-

sentative g ∈ cD for which there is a local g-parallel null line field L ⊂ TM near that

point such that Ricg(L
⊥, ·) = 0; in this case, for any x ∈ M , W (Y,K,K,X) = 0 for

K ∈ Lx, Y ∈ TxM , and X ∈ L⊥x ).

By this lemma and Proposition 1.6.14, to show that the real-analytic ambient metric g̃D

of a real-analytic, oriented, generic 2-field field D on a 5-manifold M has holonomy equal

to G2 (and not a proper subgroup thereof), it is enough to show that (1) there is some
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nonempty open subset of M on which cD is not conformally Einstein, and (2) there is some

nonempty open set such that that the manifold does not admit a pair (g, L) as in the lemma.

To do this for the indicated plane fields DF [a,b], Leistner and Nurowski explicitly compute

tensorial data associated to the representative metrics of cDF [a,b]
given by (A.1) (some of it

is recorded here in Appendix A.2) and show that neither condition in Lemma 1.6.15 can be

satisfied, completing the proof.
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Chapter 2

PARALLEL TRACTOR EXTENSION

2.1 The Parallel Tractor Extension Theorem

Section 1.3 defined the standard tractor bundle T of a conformal structure (M, c) as the

restriction TM̃ |G of the ambient tangent bundle to the metric bundle, modulo the restriction

of the natural dilation action. Moreover, it showed that via this construction, the restriction

of the ambient connection, ∇̃, to the metric bundle descends via the dilation action to a

connection∇T on T . So by construction, any∇T -parallel section of T can be identified with

a section of TM̃ |G parallel with respect to the restriction of ∇̃ (in particular, with derivatives

taken tangent to G). We investigate the conditions under which a parallel tractor can be

extended to a suitable parallel vector field on the ambient manifold, or more precisely, under

which there is a parallel vector field on the ambient manifold (or at least an open subset

of it containing the metric bundle) whose restriction to G is the parallel tractor identified

as above. We then study the same questions for parallel tractor tensors. By lowering

indices using the tractor and ambient metrics, for convenience we can derive results just for

covariant tractor tensors; one can then raise indices as desired to achieve the corresponding

results for contravariant and mixed tractor tensors.

Throughout this section, (M, c) is a conformal manifold of dimension n > 2. Denote the

metric bundle of c by G, the standard tractor bundle by T , its connection by ∇T , let (M̃, g̃)

be an ambient manifold for c, and let ∇̃ be the Levi-Civita connection of g̃.

2.1.1 The main theorem

Recall from section 1.3 that the covariant rank-r tractor tensors can be identified with the

restricted sections χ ∈ Γ(
⊗r T ∗M̃ |G) satisfying the homogeneity condition (δs)∗χ = srχ.

That development also showed that the tractor connection can be realized in terms of the
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ambient connection by the formula

∇Tv χ = ∇̃V χ,

for any V ∈ (Tπ)−1(v). (Recall that the right-hand side of the above formula does not

depend on the ambiguity of this choice, because χ has the stated homogeneity, which is

equivalent to the identity ∇̃Tχ ≡ 0.) We will sometimes invoke this identification without

comment.

By the above realization of ∇T in terms of ∇̃, the restriction of any parallel ambient

tensor χ̃ ∈ Γ(
⊗r T ∗M̃) to G is a parallel tractor tensor. Since we are interested in reversing

this restriction, and any parallel ambient tensor χ̃ in particular satisfies ∇̃T χ̃ ≡ 0, or

equivalently, (δs)∗χ̃ = srχ̃, we define the following:

Definition 2.1.1. An ambient extension of a rank-r tractor tensor χ is a section χ̃ ∈

Γ(
⊗r T ∗U) satisfying χ̃|G= χ and (δs)∗χ̃ = srχ̃, where U is some open, dilation-invariant

neighborhood of G in M̃ .

The following theorem, the first main novel result in this dissertation, states that there

are always ambient extensions parallel in at least a limited sense.

Theorem 2.1.2 (Parallel Tractor Extension Theorem). Let (M, c) be a conformal manifold

of dimension n > 2, and let g̃ be an ambient metric for c.

• If n is odd, any parallel tractor tensor χ admits an ambient extension χ̃ satisfying

∇̃χ̃ = O(ρ∞).

• If n is even, any parallel tractor tensor χ admits an ambient extension χ̃ satisfying

∇̃χ̃ = O(ρn/2−1).

(Here, ρ denotes the ambient coordinate determined by an arbitrary representative metric

g ∈ c.)

Gover proved this theorem in the special case when n is odd and r = 1 using a method

fundamentally different from that in the below proof; the same argument also applies to the

case n is even and r = 1.
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In the case that c is real-analytic and g̃ is the unique real-analytic ambient metric (up to

extension and diffeomorphism fixing G pointwise), this theorem specializes to the following,

in particular giving in odd dimensions that a parallel tractor tensor always extends to a bona

fide parallel ambient tensor; this is the fact used in the main application of this theorem in

this dissertation, in Section 3.1.

Theorem 2.1.3 (Parallel Tractor Extension Theorem: odd, real-analytic case). Let (M, c)

be a real-analytic conformal manifold of odd dimension, and let (M̃, g̃) be a real-analytic

ambient manifold for c. Any parallel tractor tensor χ on M admits a bona-fide (and real-

analytic) parallel ambient extension.

Before we give the proof of Theorem 2.1.2, we collect some technical facts about the

curvature of ambient metrics that will be used there, and prove two additional technical

lemmas.

Recall that a choice of representative g ∈ c induces a trivialization G ↔ M × R+ and

thus defines an embedding M ↪→ G by x 7→ (1, x) and, composing with the embedding

G → M̃ , an embedding M ↪→ M̃ (we will sometimes identify M with its images under

these embeddings). Via the normal form of the ambient metric, the choice g determines

an identification of M̃ with an open subset of R+ ×M × R containing R+ ×M , and this

induces a splitting of indices, A↔ (0, a,∞); explicitly, ∂0 = ∂t and ∂∞ = ∂ρ.

Lemma 2.1.4. For an ambient metric in normal form with respect to g ∈ c, on M ⊂ M̃

the curvature R̃ satisfies

(2s+ 1)R̃ABC∞,∞···∞︸ ︷︷ ︸
s−1

= R̃ d
ABC ,d∞···∞︸ ︷︷ ︸

s−1

provided either n is odd, or n is even and ||ABC|| ≤ n − 2s + 1, where ||·|| denotes the

strength of the argument multi-index.

Proof. All expressions are evaluated on M (that is, at t = 1, ρ = 0). First, assume that n

is odd. Contracting the Second Bianchi Identity reads

2g̃DER̃CD[AB,E]∞···∞︸ ︷︷ ︸
s−1

= 0
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Since g̃ is Ricci-flat to infinite order, this reduces to

g̃DER̃ABCD,E∞···∞︸ ︷︷ ︸
s−1

= 0

after applying a symmetry. Expanding the trace using the normal form of g̃ at t = 1, ρ = 0

gives

R̃ABC0,∞∞···∞︸ ︷︷ ︸
s−1

+ gdeR̃ABCd,e∞···∞︸ ︷︷ ︸
s−1

+ R̃ABC∞,0∞···∞︸ ︷︷ ︸
s−1

= 0.

Now, Proposition 1.2.13 gives

R̃ABC0,∞···∞︸ ︷︷ ︸
s

= −sR̃ABC∞,∞···∞︸ ︷︷ ︸
s−1

, R̃ABC∞,0∞···∞︸ ︷︷ ︸
s−1

= −(s+ 1)R̃ABC∞,∞···∞︸ ︷︷ ︸
s−1

.

Substituting and rearranging yield the identity for the case n is odd. If n is even, the

condition on the strength of ABC guarantees that the relevant component of the derivative

of the Ricci curvature of g̃ vanishes, so that the Bianchi identity reduces as in the above

proof.

Notice that when n is even, in the special case that c is obstruction-flat and g̃ is an

infinite-order ambient metric, the strength condition can be eliminated.

Herein, A denotes the arbitrary multi-index A1 · · ·Ar.

We invoke the following lemma twice in the proof of the theorem.

Lemma 2.1.5. Suppose c is a conformal structure with metric bundle G and ambient mani-

fold (M̃, g̃), let ∇̃ denote the Levi-Civita connection of g̃, and suppose that β ∈ Γ(
⊗r T ∗M̃)

satisfies (∇̃lβ)|G= 0 for l ∈ {1, . . . , s− 1}, for some s > 0. Then, the value of a component

βA,B0···Bs |G of (∇̃s+1β)|G does not depend on the order of the last s indices, B1, . . . , Bs.

Proof. Consider any v, 1 ≤ v ≤ s − 1; we show that transposing the indices Bv and Bv+1

preserves the value of the component βA,B0···Bs on G. This will prove the claim, because

such transpositions generate all of the permutations of B1, . . . , Bs. (Possibly) differentiating



96

the Ricci identity gives

βA,B0···Bv−1Bv+1BvBv+2···Bs

=

(
βA,B0···Bv+1 −

r∑
u=1

R̃
Q

BvBv+1 Au
βA1···Au−1QAu+1···Ar,B0···Bv−1

−
v−1∑
u=1

R̃
Q

BvBv+1 Bu
βA,B0···Bu−1QBu+1···Bv−1

)
Bv+2···Bs .

Distributing the derivatives and iteratively applying the Leibniz rule over the sums, the

above becomes

βA,B0···Bv−1Bv+1BvBv+2···Bs = βA,B0···Bs+1 + γAB0···Bs ,

where γ is some Z-linear combination of covariant derivatives of R̃ contracted into covariant

derivatives of β of order between 1 and s − 1 inclusively. Restricting to G, those latter

derivatives vanish by hypothesis, leaving the desired equality.

Proof of Parallel Tractor Extension Theorem. First, if r = 0, so that χ is just a constant

function f , then the constant function on M̃ taking on the same value is a parallel extension

of f (and the only such extension).

So, henceforth assume r ≥ 1. Fix a representative metric g ∈ c, and put g̃ into normal

form with respect to g. Define χ̃ ∈ Γ(
⊗r T ∗M̃) by parallel transport of χ in the ρ direction:

Explicitly, for each (t0, x0, ρ0) ∈ M̃ , define χ̃(t0,x0,ρ0) by parallel transport of χ(t0,x0,0) along

the curve ρ 7→ (t0, x0, ρ). Since parallel translation commutes with dilations, χ̃ is an ambient

extension. In fact, any parallel ambient extension of χ must be parallel along these curves,

so if χ admits any parallel ambient extension, it must be the candidate χ̃. In the language of

differential equations, the condition that an extension of χ be parallel is an overdetermined

system of partial differential equations with initial value condition, and χ̃ is the unique

solution to the ordinary differential system in ρ comprising a subset of those equations and

the same initial value condition.

We show below that ∇̃sχ̃ vanishes along G (that is, where ρ = 0) for all s ≥ 1 if n is

odd and for 1 ≤ s ≤ n
2 − 1 if n is even. Then, iteratively both expanding all but the first
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innermost covariant derivative in the Christoffel symbols (1.22) and substituting shows that

∇̃χ̃ vanishes to the stated order, completing the proof.

We first show that χ̃A,∞···∞︸ ︷︷ ︸
s

= 0 (identically) on M̃ . The case s = 1 holds by definition:

χ̃ is parallel in the ρ direction. Now, inductively suppose that χ̃A,∞···∞︸ ︷︷ ︸
l

= 0 on M̃ for

1 ≤ l ≤ s; expanding in Christoffel symbols gives

χ̃A,∞···∞︸ ︷︷ ︸
s+1

= ∂∞χ̃A,∞···∞︸ ︷︷ ︸
s

−
r∑

u=1

Γ̃Q∞Auχ̃A1···Au−1QAu+1···Ar,∞···∞︸ ︷︷ ︸
s

−
s∑

u=1

Γ̃Q∞∞χ̃A,∞···∞︸ ︷︷ ︸
u−1

Q∞···∞︸ ︷︷ ︸
s−u

The first and second terms vanish identically by the inductive hypothesis. Consulting (1.22)

shows that Γ̃Q∞∞ = 0, and so the last term vanishes, too, proving the inductive claim.

We proceed to the main induction, showing now for all s ≥ 1 (and, if n is even, s ≤ n
2−1)

that all the components χ̃A,B0···Bs−1 of ∇̃sχ̃ vanish on G.

In the base case, s = 1, the statement that χ̃A,B0 = 0 for B0 = 0, b0 on G is equivalent

to the hypothesis that χ is a parallel tractor; as in the base case of the previous induction,

the identity χ̃A,∞ = 0 follows from the definition of χ̃, completing the base case.

Now, assume inductively that ∇̃lχ̃ = 0 on G for 1 ≤ l ≤ s; if n is even also assume

s < n
2 − 1. To show that χ̃A,B0···Bs = 0 and so complete the induction step, we partition

the step into several cases characterized by the specializations of the multi-index B0 · · ·Bs.

Case A (Bs 6=∞)

Expanding in Christoffel symbols gives

χ̃A,B0···Bs = ∂Bsχ̃A,B0···Bs−1 + γ,

where γ is a C∞(M̃)-linear combination of components of ∇̃sχ̃, which by the inductive

hypothesis vanishes on G. Since Bs 6=∞, ∂Bs is tangent to G, and so the first term on the

right in the above expression also vanishes by the inductive hypothesis.

Case B (Bs =∞, Bl 6=∞ for some l > 0)

By Lemma 2.1.5, exchanging Bl and Bs preserves the value of the component and so

reduces this case to Case A.

Case C (B1 = · · · = Bs =∞)
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Denote B = B0. The induction argument preceding this main induction completes the

argument when B = ∞. So, henceforth assume that B 6= ∞. By the homogeneity of the

derivatives of χ̃, it suffices to prove the claim on M ⊂ G (that is, where t = 1, ρ = 0); all of

the following expressions are implicitly evaluated there.

Differentiating the Ricci identity gives

χ̃A,B∞···∞︸ ︷︷ ︸
s

= χ̃A,∞B∞···∞︸ ︷︷ ︸
s−1

+

(
r∑

u=1

R̃QAuB∞χ̃A1···Au−1QAu+1···Ar

)
,∞···∞︸ ︷︷ ︸
s−1

.

By Case B, the first term on the right-hand side is zero. Now, iteratively apply the Leibniz

rule to the second term: All of the terms in which at least one derivative index is applied to

χ̃ are zero by the inductive hypothesis, leaving just the term in which all derivative indices

are applied to the curvature factor:

χ̃A,B∞···∞︸ ︷︷ ︸
s

=
r∑

u=1

R̃QAuB∞,∞···∞︸ ︷︷ ︸
s−1

χ̃A1···Au−1QAu+1···Ar .

If B = 0, then by the first equation in Proposition 1.2.13, the right-hand side vanishes, so

we henceforth assume B = b.

We now invoke Lemma 2.1.4. Let L be the index corresponding to Q when it is lowered;

then, when n is even, s ≤ n
2 − 2 and n ≥ 4, and so ||LAub|| ≤ 5 ≤ n − 2s + 1. Thus, the

hypotheses of the lemma always hold. Applying it to the previous display equation gives

(2s+ 1)χ̃A,b∞···∞︸ ︷︷ ︸
s

= (2s+ 1)
r∑

u=1

R̃QAub∞,∞···∞︸ ︷︷ ︸
s−1

χ̃A1···Au−1QAu+1···Ar

=

r∑
u=1

R̃Q d
Aub ,d∞···∞︸ ︷︷ ︸

s−1

χ̃A1···Au−1QAu+1···Ar .

Reversing the previous argument involving the Leibniz rule and then applying the Ricci

Identity gives

(2s+ 1)χ̃A,b∞···∞︸ ︷︷ ︸
s

=

(
r∑

u=1

R̃Q d
Aub

χ̃A1···Au−1QAu+1···Ar

)
,d∞···∞︸ ︷︷ ︸

s−1

= (χ̃ d
A,b − χ̃

d
A, b)d∞···∞︸ ︷︷ ︸

s−1

= χ̃ d
A,b d∞···∞︸ ︷︷ ︸

s−1

− χ̃ d
A, bd∞···∞︸ ︷︷ ︸

s−1

.
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By Lemma 2.1.5, we may permute indices to give

(2s+ 1)χ̃A,b∞···∞︸ ︷︷ ︸
s

= χ̃ d
A,b ∞···∞︸ ︷︷ ︸

s−1

d − χ̃
d

A, b∞···∞︸ ︷︷ ︸
s−1

d.

Now, expand the final covariant differentiation of each term on the right-hand size in terms of

Christoffel symbols. The previous parts of the induction step show that all the components

of ∇̃s+1χ̃ are 0 on G except perhaps χ̃A,b∞···∞︸ ︷︷ ︸
s

; using this and consulting (1.22) yields

χ̃ d
A,b ∞···∞︸ ︷︷ ︸

s−1

d = ∂dχ̃
d

A,b ∞···∞︸ ︷︷ ︸
s−1

+ Γ̃dd0χ̃
0

A,b ∞···∞︸ ︷︷ ︸
s−1

= nχ̃A,b∞···∞︸ ︷︷ ︸
s

χ̃ d
A, b∞···∞︸ ︷︷ ︸

s−1

d = ∂dχ̃
d

A, b∞···∞︸ ︷︷ ︸
s−1

− Γ̃∞dbχ̃
d

A, ∞···∞︸ ︷︷ ︸
s

= χ̃A,b∞···∞︸ ︷︷ ︸
s

.

Substituting these two equations into the previous display equation and rearranging then

gives

(2s+ 2− n)χ̃A,b∞···∞︸ ︷︷ ︸
s

= 0.

Since s 6= n
2 − 1 by hypothesis, dividing gives that the component χ̃A,b∞···∞︸ ︷︷ ︸

s

vanishes on G

as desired, completing the induction.

We give a few examples of explicit extensions of parallel tractors.

Example 2.1.6. (Constants) As observed at the beginning of the proof, any parallel 0-tractor

(constant function) trivially admits a unique ambient extension to any ambient manifold

(M̃, g̃), namely, the constant function on M̃ that takes on the same value.

Example 2.1.7. (Tractor metric) Again trivially, for any choice of ambient metric g̃ of c,

g̃ is itself a parallel ambient extension of the tractor metric gT . Likewise, the identity

endomorphism idTM̃ of the ambient tangent bundle is a parallel ambient extension of the

identity endomorphism of the tractor bundle.

Example 2.1.8. (Einstein conformal scale) Suppose c has an Einstein representative g, with,

say, Ric g = 2(n − 1)λg. Recall from Subsection 1.3.3 that with respect to g, the Einstein

scale 1 corresponds to the parallel cotractor ξ = (1, 0,−λ), and from Subsection 1.2.5 that

c admits a canonical, Ricci-flat ambient metric, namely,

g̃can(t, x, ρ) = 2ρ dt2 + 2t dt dρ+ t2(1 + λρ)2g(x).
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Checking directly shows that ξ̃ = (1 − λρ) dt − tλ dρ is an ambient extension of ξ parallel

with respect to the Levi-Civita connection of g̃can.

The following proposition shows that on an Einstein conformal structure, parallel tractor

tensors (of arbitrary rank) always admit an ambient extension parallel with respect to the

canonical ambient metric. This is roughly equivalent to to [Lei04, Proposition 2] for non–

Ricci-flat structures and to [Lei05, Theorem 4.2] for Ricci-flat structures.

Proposition 2.1.9. Suppose c has an Einstein representative g, with, say, Ric g = 2λ(n−

1)g. Then, any parallel tractor tensor χ admits an ambient extension parallel with respect

to the Levi-Civita connection of the canonical ambient metric g̃can.

To prove this efficiently, we use the following lemma.

Lemma 2.1.10. Consider a pseudo-Riemannian manifold of the form (N × R, h), let ∇̃

denote the Levi-Civita connection of h (which need not be a product metric), let s denote

the standard coordinate on R, and suppose that ∂s ∈ Γ(T (N × R)) is ∇̃-parallel. Suppose

χ ∈ Γ(
⊗r T ∗(N×R)|N×{0}) is parallel with respect to the restriction of ∇̃. Then, the tensor

χ̃ ∈ Γ(
⊗r T ∗(N × R)) defined by translation of χ in the R-direction is ∇̃-parallel.

Proof of Proposition 2.1.9. If λ 6= 0, then in the coordinates (u, v) defined by u = t(1+λρ),

v = t(1− λρ), the canonical ambient metric has the form

g̃can =
1

2λ
(du2 − dv2) + u2g.

This is a product decomposition of g̃, where one factor is a (negative-definite) line with

coordinate v, so ∂v is ∇̃-parallel, where ∇̃ is the Levi-Civita connection of g̃can. Now, in

coordinates (u, s) = (u, v − u), G = {s = 0} and ∂s = ∂v, so the lemma yields a parallel

extension of χ.

Now, if λ = 0, then in the coordinates (t, s) defined by s = ρt, the canonical ambient

metric is

g̃can = 2 dt ds+ t2g.

Computing shows that ∂s is ∇̃-parallel, and G = {s = 0}, so the lemma again yields an

extension.
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Remark 2.1.11. Since any parallel extension to M̃ is unique, the tensor χ̃ produced in

the previous proposition agrees with the ambient extension χ̃ constructed in the proof of

Theorem 2.1.2 to infinite order.

Proof of Lemma 2.1.10. Since ∂s is parallel, it is Killing, so h and hence ∇̃ are invariant

under the flow of ∂s, which is just given by the translations µa(x, s) := (x, s + a). So, for

any Y ∈ T (N × R), say, with base point (x, s),

(∇̃Y χ̃)(x,s) = (µ∗−s∇̃)Y (µ∗−sχ̃)(x,s)

= µ∗−s(∇̃dµ−s(Y )χ̃)µ−s(x,s)

= µ∗−s(∇̃dµ−s(Y )χ̃)(x,0).

Thus, to show that χ̃ is ∇̃-parallel, it suffices to show that ∇̃Y χ̃ just for Y ∈ T (N ×R) with

base points (x, 0). Now, since χ is parallel and χ̃ extends χ, for Z ∈ T (N × {0}) we have

∇̃Z χ̃ = ∇̃Zχ = 0.

Because ∂s|(y,0) and T(y,0)(N ×{0}) span T(y,0)(N ×R) for all y ∈ N , to prove that ∇̃χ̃ = 0

it only remains show that ∇̃∂sχ̃ = 0. Now, by definition χ̃ is invariant under the flow of ∂s,

that is, L∂sχ̃ = 0. Using the index notation formula for the Lie derivative, L, in terms of a

torsion-free connection gives

0 = (L∂sχ̃)a1···ar = (∂s)
bχ̃a1···ar,b +

r∑
u=1

(∂s)
b
,auχ̃a1···au−1bau+1···ar .

By hypothesis ∂s is parallel, so each term in the summation is zero, leaving the desired

equation ∇̃∂sχ̃ = 0.

Remark 2.1.12. The explicit form of the ambient metric of a Einstein conformal structure c

makes it possible to compute the ambient extensions of tractor tensors for such structures.

For example, the parallel tractor r-form whose representation with respect to the Ein-

stein representative g ∈ c is χ−, χ0

χ∓
, χ+

 (2.1)
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has parallel extension

χ̃(t, x, ρ) = tr−1(1 + λρ)r−1dt ∧ (χ− + ρχ+) + tr(1 + λρ)rχ0

+ tr−1(1 + λρ)r−2dt ∧ dρ ∧ χ∓ + tr(1 + λρ)r−1dρ ∧ χ+.

The following proposition shows that at least on obstruction-flat manifolds, the exten-

sibility of a parallel tractor tensor to infinite order is obstructed only at the critical order

n
2 − 1.

Proposition 2.1.13. Let (M, c) be an obstruction-flat conformal manifold with even di-

mension n, and let g̃ be an infinite-order ambient metric for c. If a parallel tractor tensor

χ ∈ Γ(
⊗r T ∗) has an ambient extension χ̃′ satisfying ∇̃χ̃′ = O(ρn/2), then it has an ambient

extension χ̃ satisfying χ̃ = O(ρ∞).

Proof. Let χ̃ be the ambient extension of χ defined in the proof of the Parallel Tractor

Extension Theorem. Then, by construction, χ̃ − χ̃′ = O(ρ) and ∇̃∂ρ(χ̃ − χ̃′) = O(ρn/2).

Expanding the left hand side of the second equation in Christoffel symbols, inductively

differentiating with respect to ρ n/2 times and evaluating at ρ = 0 at each step yields

χ̃ − χ̃′ = O(ρn/2+1), and thus ∇̃χ̃ = O(ρn/2). The induction step in the proof of Theorem

2.1.2 works for s 6= n
2 − 1, so applying the induction argument to ∇̃χ̃ beginning at order n

2

gives that ∇̃χ̃ = O(ρ∞). (The induction uses Lemma 2.1.4, which by the comment after its

proof applies in this context, because c is obstruction-flat.)

2.1.2 Holonomy reduction of ambient metrics

If a conformal structure c, say, with signature (p, q), admits a parallel tractor χ, then the

conformal holonomy of c reduces to a subgroup of the stabilizer of χ at a point. So, when

there exists a bona fide parallel ambient extension χ̃ of χ with respect to an ambient metric

g̃ for c, which occurs at least when n is odd and c is real-analytic (by Theorem 2.1.3) or c

is Einstein (by Proposition 2.1.9), then the holonomy of the ambient metric is reduced to a

subgroup of O(p+ 1, q+ 1). In the case that c is Einstein, the ambient holonomy reduces as

follows. Compare this result with Proposition 3.1.14, which gives the specialization of this

proposition to conformal structures induced by generic 2-plane fields on 5-manifolds.
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Proposition 2.1.14. Let (M, c) be an Einstein conformal structure of signature (p, q), say

with Einstein representative g ∈ c and Ric g = 2(n−1)λg, let ξ ∈ Γ(T ) be the corresponding

parallel tractor, let g̃can be the canonical ambient metric defined in (1.21), and let Ξ be the

unique g̃-parallel ambient extension of ξ. Then,

• If λ < 0, then Ξ is spacelike, and Hol(g̃can) ≤ O(p, q + 1).

• If λ = 0 (i.e., g is Ricci-flat), then Ξ is lightlike, and Hol(g̃can) is contained in the

stabilizer in Ø(p+ 1, q + 1) of a null vector in Rp+1,q+1.

• If λ > 0, then Ξ is timelike, and Hol(g̃can) ≤ O(p+ 1, q).

If λ 6= 0, then any point in M̃ admits a neighborhood on which g̃ decomposes as a pseudo-

Riemannian product metric (V, k)× (U, h) such that TV = span{Ξ}|V and TU = {Ξ}⊥|U .

Proof. Using the formula after Proposition 1.3.6 gives gT (ξ, ξ) = −2λ (or, equivalently,

g̃can(Ξ,Ξ) = −2λ). The respective stabilizers in O(p+ 1, q+ 1) of a spacelike and a timelike

vector in Rp+1,q+1 are, respectively, O(p, q + 1) and O(p+ 1, q).

Since Ξ is parallel, so are span{Ξ} and {Ξ}⊥, and if λ 6= 0, then span{Ξ}∩ {Ξ}⊥ = {0}.

Pick an arbitrary point x ∈ M̃ ; by construction, span{Ξx} and {Ξx}⊥ are Holx(M̃, g̃can)-

submodules; decompose the latter into a direct sum
⊕

j Ej of indecomposable submodules.

Then, span{Ξx} ⊕
⊕

j Ej is a decomposition of TxM̃ into indecomposable Holx(M̃, g̃can)-

submodules, so the de Rham Theorem (Theorem 1.6.2) yields a decomposition of some

neighborhood of x into a pseudo-Riemannian product manifold (V, k) × (
∏
j Uj ,

⊕
j hj).

Denote U :=
∏
Uj ; by construction, TV = span{Ξ}|V and TU = {Ξ}⊥|U . (This prod-

uct decomposition result can be proven more efficiently using another form of de Rham’s

Theorem, for example, [Wu64, Section 2].)

These results are essentially contained in those cited for Proposition 2.1.9, and the

observation about the relationship between the sign of the Einstein constant, λ, and the

sign of gT (ξ, ξ) is implicit in [Gov, Section 2].
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2.2 The critical order for n even

In this section, (M, c) is a conformal structure of even dimension n > 2. Recall that in

this case, a conformal structure only determines an ambient metric up to diffeomorphism

and up to an ambiguity at order n/2, and that a choice of this ambiguity determines the

ambient metric to infinite order. For an arbitrary parallel tractor tensor χ, Theorem 2.1.2

only guarantees the existence of an ambient extension parallel to order n
2 − 1, and so the

existence of an ambient extension parallel to infinite order a priori may depend on the choice

of the ambiguity. In this section, we develop some criteria for uniqueness of an ambient

metric for which χ admits an ambient extension parallel to infinite order.

2.2.1 Determining tractor tensors

In this section we restrict attention to obstruction-flat conformal structures, by loosening

a hypothesis in the formulation of the ambient metric, one can extend this investigation to

non–obstruction-flat structures; see Section 3.3 for more discussion of this point. Recall that

in this case, Proposition 2.1.13 says that if a parallel tractor tensor χ admits an extension

parallel to order n
2 , then it admits an extension parallel to infinite order.

We formulate a condition on parallel tractor tensors χ that guarantees uniqueness of an

infinite-order ambient metric (see Subsection 1.2.5) for which χ admits a parallel extension,

but not necessarily existence. Recall that 1-forms on M can be embedded naturally in the

set of tractor 2-forms just by insertion into the injecting part, or by raising an index with

respect to gT , in the space of adjoint tractors (that is, gT -skew tractor endomorphisms),

Γ(AM). Explicitly, let π : G → M denote the natural projection. Then, for any η ∈ T ∗xM ,

pulling back to the metric bundle yields a section π∗η ∈ Γ(T ∗G|π−1(x)) that annihilates TA,

and since TA spans the annihilator of TG ⊂ TM̃ , we may regard π∗η as an element of

T ∗x (−1) modTA. So, define a bundle map ι : T ∗M → AM by

ι(η)AB := 2(gT )ACT[C(π∗η)B],

where π∗η is any representative of T ∗x (−1) modTA; because this quantity is skewed with

TA, ι(η)AC is independent of this ambiguity. With respect to the splitting induced by any
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choice of representative g ∈ c,

ι(η)AB =


0 ηb 0

0 0 −ηa

0 0 0

 .

The map ι is an adjoint analogue of the natural injection D[−1] ↪→ T defined in Subsection

1.3.1. Now, for any tractor tensor χ ∈ Γ(
⊗r T ∗) define another bundle map, Fχ : T ∗M →⊗r T ∗, by

Fχ(η) := ι(η).χ,

where . denotes the natural action of AM on
⊗r T ∗; explicitly,

[Fχ(η)]A = −
r∑

u=1

ι(η)QAuχA1···Au−1Q···Au+1···Ar .

Definition 2.2.1. A tractor tensor χ is determining if the induced map Fχ : Γ(T ∗M)→

Γ(
⊗r T ∗) on sections is injective; a tractor is nondetermining if it is not determining.

The primary purpose for this definition is the following consequence:

Proposition 2.2.2. Suppose n > 2 is even and that c is obstruction-flat. Suppose χ is

parallel and determining. Then, there is at most one infinite-order ambient metric for which

χ admits an ambient extension satisfying ∇̃χ̃ = O(ρn/2). (If there is such an ambient metric,

Proposition 2.1.13 shows that χ moreover admits an extension satisfying ∇̃χ̃ = O(ρ∞) for

that metric.)

Proof. Put g̃ into normal form with respect to an arbitrary representative g ∈ c. If χ admits

an ambient extension satisfying ∇̃χ̃ = O(ρn/2), then commuting covariant derivatives and

distributing the covariant derivative indices as in the proof of the Parallel Tractor Extension

Theorem gives

0 = χ̃A,b∞···∞︸ ︷︷ ︸
n/2−1

− χ̃A,∞b∞···∞︸ ︷︷ ︸
n/2−2

= −

(
r∑

u=1

R̃ Q
b∞ Au

χ̃A1···Au−1QAu+1···Ar

)
,∞···∞︸ ︷︷ ︸
n/2−2

= −
r∑

u=1

R̃ Q
b∞ Au,∞···∞︸ ︷︷ ︸

n/2−2

χ̃A1···Au−1QAu+1···Ar .
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The only components of curvature that appear in the sum that depend on the ambiguity in

the ambient metric are those of the form R̃ 0
b∞ a and R̃ q

b∞ ∞; the others are determined by

g.

Henceforth, we restrict to M ⊂ M̃ . For an arbitrary vector field V ∈ Γ(TM), de-

fine ηa = V bR̃∞ab∞,∞···∞︸ ︷︷ ︸
n/2−2

. Unwinding the definitions, ι(η)QA = −V bR̃ Q
∞b A,∞···∞︸ ︷︷ ︸

n/2−2

for

Q
A = 0

a and Q
A = q

∞, and ι(η)QA = 0 otherwise, so ι(η)QA comprises exactly the part

of −V bR̃ Q
∞b A,∞···∞︸ ︷︷ ︸

n/2−2

that depends on the ambiguity in the ambient metric, so DQ
A :=

−V bR̃ Q
∞b A,∞···∞︸ ︷︷ ︸

n/2−2

−ι(η)QA is independent of the ambiguity in the ambient metric. Contract-

ing V into the previous display equation gives−V b
∑r

u=1 R̃
Q

b∞ Au,∞···∞︸ ︷︷ ︸
n/2−2

χ̃A1···Au−1QAu+1···Ar =

0, which can be rewritten as Fχ(η) = −D.χ. Since χ is determining, at most one choice of

η satisfies this equation. Since the choice of V is arbitrary, there is at most possibility of

R̃∞ab∞,∞···∞︸ ︷︷ ︸
n/2−2

; this tensor parameterizes the ambiguity in the ambient metric, yielding the

desired uniqueness.

Tractor tensors sometimes fail to be determining.

Example 2.2.3. By definition, for χ ∈ Γ(
⊗0 T ∗) ∼= E we have Fχ(·) = ι(·).χ = 0, so functions

are never determining.

Example 2.2.4. Example 2.1.7 observes that gT admits parallel extensions for more than one

choice—in fact, every choice—of ambient metric, so it is not determining. Indeed, β.gT = 0

for every adjoint tractor β.

Proposition 2.2.2 can be plied to show in several important cases the uniqueness of an

ambient metric g̃ (in the sense described in the proposition) for which a parallel tractor

tensor admits a parallel ambient extension. In some cases, we will need explicit formulas

for the components of Fχ with with respect to the splitting induced by an arbitrary choice

of representative g ∈ c. For example, if χ is a tractor 1-form, then

[Fχ(η)]A = (0,−ηaχ0, η
qχq), (2.2)
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and if χ is a tractor r-form, r > 1, then

(Fχ(η))A =

0,
−rη[a1

χ|0|a2···ar]

ηqχ0qa3···ia

, ηqχqa2···ar + (r − 1)η[a2
χ|0∞|a3···ar]

 ∈ Γ (ΛrT ∗) . (2.3)

If W is an irreducible O(p+1, q+1)-representation and W is the tractor tensor bundle it

induces, by Theorem 1.3.14 a parallel section χ ∈ Γ(W ) can be recovered from its projecting

part α := Π0(χ) using the BGG splitting operator L0 for W . (Recall that Theorem 1.3.14

strictly applies to a larger parabolic subgroup of O(p+ 1, q + 1) with the same subalgebra

ṗ of Ṗ , but that result appears to be true for Ṗ , too; we henceforth assume that it is.) So,

one can write Fχ in terms of α, that is, as FL0(α), and investigate the determining criterion

in terms of that typically simpler object.

Example 2.2.5. If W = (the standard representation), so that χ is a parallel tractor 1-form

and its projecting part is α := χ0 = Π0(χ), then composing (2.2) with the BGG splitting

operator (1.39) gives

[Fχ(η)]A = (0,−ηaα, ηqαq), (2.4)

Example 2.2.6. If W = .
.
.

 r, so that χ is a tractor r-form and its projecting part is

αa2···ar := χ0a2···ar , then composing (2.3) with the BGG splitting operator (1.41) gives

(Fχ(η))A =

0,
−rη[a1

αa2···ar]

ηqαqa3···ar

, ηqα[a2···ar,q] −
r−1

n−r+2η[a2
α

q
|q|a3···ar],

 ∈ Γ (ΛrT ∗) . (2.5)

Recall from Proposition 1.3.8 that a nonzero parallel cotractor χ defines an almost

Einstein scale, and from Proposition 1.3.9 that its projecting part χ0 = Π0(χ) is nonzero

on a dense subset of M .

Proposition 2.2.7. Any nonzero parallel tractor χ ∈ Γ(T ∗) is determining.

Proof. By (2.4), [Fχ(η)]a = −ηaχ0. Since χ is parallel and nonzero Proposition 1.3.8 gives

that χ0 is an almost Einstein scale, and so by Proposition 1.3.9 it is nonzero on a dense

subset of M . Thus, if [Fχ(η)] = 0 then η = 0, that is, χ is determining.
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Together with Example 2.1.8, this proposition immediately yields the following:

Corollary 2.2.8. Suppose n > 2 is even and that c contains an Einstein representative g.

Up to infinite order and diffeomorphism fixing G pointwise, the canonical ambient metric

g̃can is the unique infinite-order ambient metric for c for which the Einstein scale χ admits an

extension χ̃ satisfying ∇̃χ̃ = O(ρn/2). In particular, if c is real-analytic, then the canonical

ambient metric g̃can is the unique real-analytic ambient metric (up to diffeomorphism fixing

G pointwise and up to extension) for which χ admits a parallel ambient extension.

Higher-rank parallel tractor tensors exhibit more varied behaviors. We first consider

parallel tractor r-forms χ and then first the special case r = 2. As above, we denote the

projecting part of a parallel tractor r-form by αa2···ar := χ0a2···ar .

Proposition 2.2.9. A parallel tractor χ ∈ Γ(Λ2T ∗) is determining iff its projecting part is

non-null on a dense open subset of M .

Proof. As before, denote the projecting part of χ by α := Π0(χ). If χ vanishes anywhere,

then it is the zero tractor tensor; so, trivially, it is nondetermining and αqα
q = 0. Thus,

assume henceforth that χ is nonvanishing; in particular, recall from Proposition 1.3.18 that

α is nonzero on a dense subset of M .

Suppose that Fχ(η) = 0. Equation (2.5) gives that 0 = [Fχ(η)]ab = −2η[aαb]. Since αb

is nonzero on a dense open subset U ⊆ M , ηa|U= fαa|U for some function f ∈ C∞(U).

Consulting (2.5) again gives that 0 = [Fχ(η)]0∞|U= (ηqαq)|U= f(αqα
q)|U .

So, if αqα
q is nonvanishing on a dense subset V ⊂ M , then f is identically zero on the

dense subset U ∩ V ⊆ M . Thus, ηa|V = f |V αa|V = 0, and by continuity, ηa = 0, so χ is

determining.

Conversely, suppose αqα
q vanishes on some nonempty, open set W , and let ψ be a

bump function supported in W . Since α is nonzero on a dense subset of M , ψα 6= 0;

we show that Fχ(ψα) = 0, which gives that χ is not determining, by showing separately

that its components Fχ(ψα)AB vanish. Consulting (2.5) gives that [Fχ(ψα)]0a = 0, and

substituting gives [Fχ(ψα)]ab = −2ψα[aαb] = 0. Also, [Fχ(ψα)]0∞ = ψαqα
q; this vanishes

on W by definition, and it vanishes on the complement of W because ψ does. It remains to



109

check that [Fχ(ψα)]∞a = 0. Substituting in the formula from (2.5) gives

[Fχ(ψα)]∞a = (ψαq)α[a,q] − 1
n(ψαa)α

q
q, = ψ

(
1
2α

qαa,q − 1
2α

qαq,a − 1
nαaα

q
q,

)
.

Since α is null, differentiating gives 0 = (αqα
q),a = 2αqαq,a, so the second term in the

parentheses in the rightmost expression vanishes. Contracting α into the conformal Killing

form equation Θ0(α) = 0 (see (1.42)) gives αqαa,q − 2
nαaα

q
q, = 0, so the remaining terms

in those parentheses vanish, and so Fχ(ψα) vanishes as desired.

We can give a similar result for all (not necessarily parallel) tractor r-forms, for all r ≥ 2.

As before, let α denote the projecting part of χ.

Proposition 2.2.10. Suppose χ ∈ Γ(ΛrT ∗), r ≥ 2 is nondetermining. Then, at least one

of the following holds:

1. The projecting part α vanishes on some nonempty open set.

2. There is a nonempty open set U such that α|U= β ∧ γ, where β ∈ Γ(T ∗U) is null and

γ ∈ Γ(Λr−2T ∗U).

In particular, if the conformal structure c is definite, then (1) holds. If instead χ is parallel

and nonzero, (2) holds.

Proof. By definition, there is some nonzero η ∈ Γ(T ∗M) such that Fχ(η) = 0. Then,

the formulas for the a1 · · · ar and 0∞a3 · · · ar components of Fχ(η) in Equation (2.5) give

respectively that η ∧ α and η]yα both vanish identically. Then,

0 = η ∧ (η]yα) + η]y (η ∧ α) = 〈η, η〉α.

So, if (i) does not hold, then η is null on a dense subset of M and hence, by continuity,

everywhere. Let U be the (nonempty) set on which η is nonzero. Then, η ∧ α = 0 implies

that α|U= η|U∧γ for some γ ∈ Γ(Λr−2T ∗U). Taking β = η|U satisfies the hypothesis.

If χ is also parallel and nonzero, then by Proposition 1.3.18, α is nonvanishing on a

dense subset of M , eliminating the possibility of (1).
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This proposition, together with Proposition 2.2.7, gives the following result in the special

case that c is definite.

Corollary 2.2.11. Suppose c is definite. Then, any nonzero parallel tractor r-form, χ ∈

Γ(ΛrT ∗), r ≥ 1, is determining.

We produce analogs of the above results for sections of tractor tensor bundles induced

by irreducible O(p+ 1, q+ 1)-representations. To do so, we use the fact that, because Fχ is

defined by an endomorphism action, it obeys a corresponding Leibniz rule.

Proposition 2.2.12. The operator Fχ satisfies

Fχ(1)⊗···⊗χ(s)(η) =
s∑

v=1

χ(1) ⊗ · · · ⊗ χ(v−1) ⊗ [Fχ(v)(η)]⊗ χ(v+1) ⊗ · · · ⊗ χ(s).

Proof. Applying the definition,

Fχ(1)⊗···⊗χ(s)(η) = ι(η).(χ(1) ⊗ · · · ⊗ χ(s))

=
s∑

v=1

χ(1) ⊗ · · · ⊗ χ(v−1) ⊗ [ι(η).χ(v)]⊗ χ(v+1) ⊗ · · · ⊗ χ(s)

=

s∑
v=1

χ(1) ⊗ · · · ⊗ χ(v−1) ⊗ [Fχ(v)(η)]⊗ χ(v+1) ⊗ · · · ⊗ χ(s).

Let λ = (r1, . . . , rs) be a partition of some nonnegative integer r with r1 + r2 ≤ n; recall

from Subsection 1.2.1 that we denote the corresponding O(p + 1, q + 1)-representation by

S[λ](Rp+1,q+1)∗. For j = 1, . . . , s, let A(j) denote the multi-index A
(j)
1 · · ·A

(j)
rj . Then, we

may write any section of the corresponding tractor tensor bundle,

W := E ×Ṗ W ⊆
s⊗
j=1

ΛrjT ∗ ⊆
r⊗
T ∗

(see Subsection 1.3.4) as χA(1)···A(s) , in particular so that for each j, χ is antisymmetric in

the indices constituting A(j), which correspond to the jth column of the Young diagram

defined by λ.
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Examples 1.3.11 and 1.3.12 together with further experimentation not recorded here

suggests that for a general nontrivial irreducible O(p + 1, q + 1)-representation W, the

induced canonical projection W →Wṅ can be identified with the map

χA(1)···A(s) 7→ χ
0a

(1)
2 ···a

(1)
r1
···0a(s)

2 ···a
(s)
rs

where we regard the right-hand side as an element of (
⊗s

j=1 Λrj−1T ∗M)[r]. Equivalently,

this is the map given by contracting χA(1)···A(s) with TA
(1)
1 · · ·TA

(s)
1 and pulling back by the

inclusion G ↪→ M̃ . For any Young diagram Y (necessarily marked with a subscript 0),

call the statement that this map is indeed the canonical projection for the corresponding

irreducible O(p+ 1, q + 1)-representation W the tractor projection hypothesis for Y .

Proposition 2.2.13. Suppose λ = (r1, . . . , rs) is a partition for which rs = 1. If χ

is a nonzero parallel section of the bundle W induced by the irreducible O(p + 1, q + 1)-

representation S[λ](Rp+1,q+1)∗, then χ is determining.

Proof. Suppose that the Young diagram has column heights r1 ≥ · · · ≥ rs = 1. First

suppose that χ can be written as

χ = χ(1) ⊗ · · · ⊗ χ(s), (2.6)

where χ(u) ∈ Γ(ΛruT ∗) for 1 ≤ u ≤ s. (Any section χ ∈ Γ(W ) can be written as a linear

combination of such tensors.)

For 1 ≤ u ≤ s − 1 denote by A
(u)
− the multi-index 0a

(u)
2 · · · a

(u)
ru . We compute the

component Fχ(η)
A

(1)
− ···A

(s−1)
− A

: By Proposition 2.2.12,

Fχ(η)
A

(1)
− ···A

(s−1)
− A

=

(
s−1∑
u=1

χ
(1)

A
(1)
−
· · ·χ(u−1)

A
(u−1)
−

[Fχ(u)(η)]
A

(u)
−
χ

(u+1)

A
(u+1)
−

· · ·χ(s−1)

A
(s−1)
−

χ
(s)
A

)

+ χ
(1)

A
(1)
−
· · ·χ(s−1)

A
(s−1)
−

[Fχ(s)(η)]A.

Now, each factor [Fχ(u)(η)]
A

(u)
−

vanishes by equation (2.2) (if ru = 1) or (2.3) (if ru > 1),

leaving only the last term:

Fχ(η)
A

(1)
− ···A

(s−1)
− A

= χ
(1)
A−
· · ·χ(s−1)

A−
[Fχ(s)(η)]A.
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By (2.2), [Fχ(s)(η)]a = ηaχ
(s)
0 , so

Fχ(η)
A

(1)
− ···A

(s−1)
− a

= ηaχA
(1)
− ···A

(s−1)
− 0

.

By linearity, the same holds for arbitrary tractors χ, not just those admitting the decompo-

sition (2.6). Now, χ
A

(1)
− ···A

(s−1)
− 0

is the projecting part of χ; since it is parallel, Proposition

1.3.18 gives that it is nonzero on some dense subset U ⊆M . So, if Fχ(η) = 0, then η is zero

on U and by continuity on all of M , that is, χ is determining.

Proposition 2.2.14. Suppose that the tractor projection hypothesis holds for a partition

λ = (r1, . . . , rs) of r > 0 with r1 + r2 ≤ n and that c is definite. If χ is a nonzero

parallel section of the bundle W induced by the irreducible O(p + 1, q + 1)-representation

S[λ](Rp+1,q+1)∗, then χ is determining.

Proof. We use the notation of the proof of the previous proposition. Write χ in index

notation as χA(1)···A(s−1)A. If we pick local coordinates, fixing the multi-index A
(1)
− · · ·A

(s−1)
−

yields a tractor rs-form µ ∈ Γ(ΛrsT ∗). Arguing as in the proof of Proposition 2.2.13 gives

that Fµ(η)A is then simply [Fχ(η)]
A

(1)
− ···A

(s−1)
− A

with the multi-index A
(1)
− · · ·A

(s−1)
− fixed.

Suppose χ is nondetermining, say that the nonzero 1-form η ∈ Γ(T ∗M) lies in kerFχ,

and let U be some nonempty open set on which η is nonvanishing. Since χ is nonzero

and parallel, by Proposition 1.3.18 the projecting part χ
A

(1)
− ···A

(s−1)
− A−

of χ is nonvanishing

on some dense open subset on M , so we may replace U with some nonempty subset on

which both η and χ
A

(1)
− ···A

(s−1)
− A−

are nonvanishing. Replace U again with a coordinate

chart on some subset of U ; then, there is some multi-index A
(1)
− · · ·A

(s−1)
− A− for which the

component χ
A

(1)
− ···A

(s−1)
− A−

is nonzero on some open subset of U , and we yet again replace

U with this subset. Fix just the multi-index A
(1)
− · · ·A

(s−1)
− , which yields a tractor form µ

as above. By construction, Fµ(η|U ) = 0 but η|U 6= 0 and hence µ is not determining. On

the other hand, the projecting part µA− of µ is just the projecting part of χ with the multi-

index A
(1)
− · · ·A

(s−1)
− fixed, and thus it is nonvanishing on U . This contradicts Proposition

2.2.10, so χ must be determining.

Remark 2.2.15. As in Proposition 2.2.10, in the case r ≥ 2 we could have instead produced a

stronger result, giving necessary conditions for η to be in kerFχ, from which the stated result
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for c definite would follow; for parallel sections χ of bundles W corresponding to general

Young diagrams, though, the analogous conditions on η are substantially more involved

than for r-forms.

To illustrate how to analyze tractor tensor bundles induced by general (not necessarily

irreducible) O(p+1, q+1)-representations, we determine a necessary and sufficient condition

for a general parallel 2-tensor to be determining. Recall that the decomposition of
⊗2 T ∗

into irreducible O(p+ 1, q + 1)-subrepresentations is

⊗2 T ∗ ∼= • ⊕ 0 ⊕ .

The projections of χ ∈ Γ(
⊗2 T ∗) onto the corresponding subbundles are

[ΠR(χ)]AB = (n+ 2)−1χ Q
Q gTAB

[ΠS2
0T ∗(χ)]AB = χ(AB) − (n+ 2)−1χ Q

Q gTAB

[ΠΛ2T ∗(χ)]AB = χ[AB].

One can show that 0 satisfies the tractor projection hypothesis, so the projecting

parts of the second two tractors are

[ΠS2
0T ∗(χ)]00 = χ00

[ΠΛ2T ∗(χ)]0b = χ[0b].

Proposition 2.2.16. Suppose χ is a parallel tractor 2-tensor. Then, χ is determining iff

χ00 is nonzero or χ[0b] is non-null on a dense subset.

Proof. It suffices to show that ΠS2
0T ∗(χ) or ΠΛ2T ∗(χ) is determining.

Since 0 satisfies the tractor projection hypothesis, Proposition 2.2.13 gives that if

χ00 = ΠS2
0T ∗(χ) is not identically zero then χ is determining. Alternately, if [ΠΛ2T ∗(χ)]0b =

χ[0b] is non-null on a dense subset, then applying Proposition 2.2.9 shows that ΠΛ2T ∗(χ) is

determining.

Suppose χ00 is identically zero and χ[0b] is null on some nonempty open subset. Then,

ΠS2
0T ∗χ = 0 and so

Fχ = FΠtrivχ + FΠ
S2

0T
∗χ + FΠΛ2T ∗χ

= FΠΛ2T ∗χ
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Since [ΠΛ2T ∗(χ)]0b = 2χ[0b] is null, by Proposition 2.2.9, Fχ = FΠΛ2T ∗χ
is not injective, and

so χ is not determining.
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Chapter 3

APPLICATIONS

3.1 The ambient holonomy of Nurowski conformal structures

The group G2 was among the last on Berger’s List (see Theorem 1.6.4) to be realized as the

holonomy group of a pseudo-Riemannian metric. Bryant indicated the construction [Bry87]

of the first known example of a metric with G2 holonomy, and Leistner and Nurowski

constructed [LN10] the 8-parameter class of such metrics described in Example 1.6.13. In

this section, we demonstrate that applying the Fefferman-Graham ambient construction to

Nurowski’s conformal structures produces a rich, new class of examples.

3.1.1 G2 holonomy

Hammerl and Sagerschnig proved that a conformal structure induced by a generic 2-plane

field on an orientable 5-manifold admits a certain kind of parallel tractor object. Call a

(tractor or ambient) 3-form split type if its restriction to each point is split type (see

Subsection 1.4.1). (If the 3-form is parallel with respect to the corresponding connection,

to determine whether it is split type it suffices to check one point.)

Theorem 3.1.1. [HS09] A conformal structure c on an orientable 5-manifold admits a split

type, parallel tractor 3-form Φ ∈ E[ABC] compatible with the metric, that is, satisfying

(·yΦ) ∧ (·yΦ) ∧ Φ = λgT (·, ·) volT (3.1)

for some λ ∈ R∗, if and only if it is induced by a generic 2-plane field, that is, c = cD for

some generic 2-plane field D ⊂ TM . (Here, volT ∈ Λ7T ∗ is the volume form of gT .)

The version of this theorem given by Hammerl and Sagerschnig, [HS09, Theorem A],

restricts attention to conformal structures of signature (2, 3) and instead of a parallel trac-

tor 3-form of split type it considers a normal conformal Killing 2-form φ satisfying a corre-

sponding genericity condition. However, Φ can be recovered from φ using the BGG splitting
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operator L0 for Λ3T ∗ (see (1.41)), and because any 3-form of split type on R7 induces a

signature-(3, 4) symmetric bilinear form, parallel tractor 3-forms of split type only occur in

signature (2, 3).

From this theorem and the real-analytic version of the Parallel Tractor Extension The-

orem (Theorem 2.1.3), it follows immediately that the holonomy of any ambient metric

induced by a real-analytic, generic 2-plane field on an orientable 5-manifold is contained in

G2, provided we restrict to the domain of the parallel extension, and with some more work

that an analogous result holds for such plane fields on nonorientable 5-manifolds.

Theorem 3.1.2. Suppose D is a real-analytic, generic 2-plane field on a 5-manifold, let cD

be the conformal structure it naturally induces, and let (M̃, g̃D) be a real-analytic ambient

metric of cD. If M is orientable, then (possibly replacing g̃D with its restriction to some

dilation-invariant open subset of M̃ containing G) Hol(g̃D) ≤ G2; if M is nonorientable,

then in the same sense, Hol(g̃D) ≤ G2×Z2 but Hol(g̃D) 6≤ G2.

Proof. First suppose that M is orientable. Let Φ be a tractor 3-form on cD guaranteed

by Theorem 3.1.1. Then Theorem 2.1.3 (the real-analytic version of the Parallel Tractor

Extension Theorem) guarantees that M̃ admits a parallel ambient extension Φ̃ extending

Φ; because Φ is split, so is Φ̃. Then, after replacing g̃D with its restriction to the domain of

Φ̃, Hol(g̃D) is contained in the stabilizer of a split 3-form on R3,4, namely, G2.

If M is nonorientable, then neither is M̃ , and so Hol(M̃, g̃) 6≤ SO(3, 4); in particular,

Hol(M̃, g̃) 6≤ G2 < SO(3, 4).

Now suppose that M is nonorientable. Let M̄ be its orientation cover with projection

π̄ : M̄ → M , and let σ : M̄ → M̄ be the deck transformation of π̄ that exchanges the

(two) elements in each fiber of π̄. Set D̄ := (T π̄)−1(D) ⊂ TM̄ ; since it is locally equivalent

to D (via restrictions of π̄), it is generic. We show that the data derived from D and D̄

are suitably compatible with respect to π̄ and σ, and then use this to prove the claimed

holonomy containment.

Since D and D̄ are locally equivalent, and the construction D  cD depends only on

local data, the conformal structure cD̄ on M̄ induced by D̄ satisfies cD̄ = π̄∗cD and so

σ∗cD = cD. Now, pick an arbitrary representative g ∈ cD; then, by construction, ḡ :=



117

π̄∗g is a representative of cD̄. Let g̃D̄ be a real-analytic ambient metric of cD̄. Then, the

representatives g and ḡ respectively induce splittings (t, x, ρ) and (t̄, x̄, ρ̄) on M̃ and ˜̄M .

Furthermore, π̄ extends to a covering map ˜̄π : ˜̄M → M̃ defined by ˜̄π(t̄, x̄, ρ̄) = (t̄, π̄(x̄), ρ̄),

and σ̄ extends to a deck transformation σ : ˜̄M → ˜̄M defined by σ̃(t̄, x̄, ρ̄) = (t̄, σ(x̄), ρ̄).

Since the Levi-Civita connection ˜̄∇ of g̃D̄ is just the pullback of the Levi-Civita connection

∇̃ of g̃D, it is preserved by σ̃.

Again, Theorem 3.1.1 guarantees the existence of a split parallel tractor 3-form Φ̄ on

the tractor bundle of M̄ . By construction, σ∗Φ̄ = −Φ̄: σ∗ preserves Φ̄ up to sign by

symmetry, and because σ∗ volT = − volT , substituting in (3.1) shows that it must reverse

Φ. Then Theorem 2.1.3 guarantees the existence of a parallel ambient 3-form ˜̄Φ, and since

the ambient construction is local, σ̃∗ ˜̄Φ = −˜̄Φ.

For an arbitrary point p̄ ∈ M̄ , we compute the subgroup of GL(Tp̄M̄) preserving the

pair {±˜̄Φ} (setwise): First, a.˜̄Φp̄ = ˜̄Φp̄ for some GL(Tp̄M̄) iff a ∈ G2; similarly, if a.˜̄Φ = −˜̄Φ,

then [a · (− id)].˜̄Φp̄ = ˜̄Φp̄, so a · (− id) ∈ G2 (and vice versa). Then, since Z2
∼= {± id}

commutes with G2, the subgroup preserving the pair {± ˜̄Φp̄} is exactly G2×Z2. Then, since

±˜̄Φ are both parallel, the stabilizers of their restrictions in GL(Tp̄M̄) at each respective

point p̄ ∈ M̃ determine a parallel (G2×Z2)-structure. Then, because {± ˜̄Φ} is preserved

by σ̃, so is the (G2×Z2)-structure, which hence descends to such a structure on an open

subset of M̃ containing G, to which we restrict g̃. Then, by the compatibility of ˜̄∇ and ∇̃,

the structure is parallel with respect to the latter, and thus Hol(g̃D) ≤ G2×Z2.

Henceforth, we may replace g̃D with its restriction to the domain of the parallel extension

Φ̃ (which by construction is invariant under dilation) without comment.

Remark 3.1.3. One could alternately frame the proof of the above theorem in the nonori-

entable case by regarding a nonorientable (or even general) 2-plane field on a 5-manifold as

a normal, regular parabolic geometry of type (g2, P
′), where P ′ is the stabilizer of a null

ray in G2×Z2, which guarantees the existence of a reduction of the holonomy of the tractor

connection to G2×Z2 < O(3, 4).

Remark 3.1.4. If M is orientable, extending (3.1) gives that the ambient metric g̃D and the
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3-form Φ on M̃ are related up to a nonzero constant factor by

[(·y Φ̃) ∧ (·y Φ̃) ∧y Φ̃] = g̃Dṽol,

where ṽol is the volume form of g̃D.

A converse of Theorem 3.1.2 is again a consequence of Theorem 3.1.1:

Proposition 3.1.5. If a real-analytic ambient metric g̃ of a signature (2, 3) real-analytic

conformal 5-manifold (M, c) has holonomy contained in G2 < SO(3, 4) (if M orientable)

or G2×Z2 < O(3, 4) (if M not orientable), then c = cD for some generic 2-plane field

D ⊂ TM .

To prove this, we use the following fact:

Proposition 3.1.6. [HS09] Let D be a 2-plane field on an oriented 5-manifold, and let

ΦABC ∈ EABC be the corresponding parallel 3-form in Theorem 3.1.1. Its projecting part

[Π0(Φ)]ab ∈ Eab[2] spans the line subbundle of Λ2T ∗ that annihilates D⊥. Equivalently,

because D is totally null, the 2-plane field defined by the (locally decomposable) weighted

bivector field [Π0(Φ)]ab ∈ Eab[−2] is just D itself.

Proof of Proposition 3.1.5. Again, first suppose that M is orientable. Since Hol(g̃) ≤ G2 <

SO(3, 4), g̃ admits a parallel 3-form of split type compatible with the metric; the restriction

of that 3-form to a section of Γ(TM̃ |G) is a parallel tractor 3-form of split type compatible

with the tractor metric. So, by Theorem 3.1.1 c is induced by some D.

Now, suppose that M is nonorientable, and let F denote the parallel (G2×Z2)-structure

on g̃. Use the same notation as in the proof of the previous theorem, and furthermore

denote the pullback conformal structure on M̄ by c̄ := π̄∗c. Since (˜̄M, ˜̄g) is orientable, it

admits a (parallel) GL+(7,R)-structure. Then, the intersection of this structure with the

(G2×Z2)-structure ˜̄π∗F is a parallel G2-structure on ˜̄M , G2 < SO(3, 4) and hence ˜̄g admits

a parallel 3-form ˜̄Φ of split type compatible with ˜̄g. As in the previous theorem, we may

assume that σ̃∗ ˜̄Φ = −˜̄Φ. Restricting ˜̄Φ to the tractor 3-form bundle, Λ3T̄ ∗, of c̄ yields a

parallel tractor 3-form Φ̄ on c̄, so by Theorem 3.1.1 c̄ is induced by some generic 2-plane

field, that is c̄ = cD̄ for some D̄ ⊂ Γ(TM̄). This field is determined by the bivector field
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[Π0(Φ̄)]]], where Π : Γ(Λ3T̄ ∗) → Γ(Λ2T ∗M̄) is the projection of a tractor 3-form onto its

projecting part. Let σT denote the restriction σ̃|G . Then, the restriction of (σT )∗Φ̄ = −Φ̄

has projecting part −[Π0(Φ̄)]. Since [Π0(Φ̄)]]] and −[Π0(Φ̄)]]] define the same 2-plane field,

D̄, that plane field is invariant under σ and so it descends to a plane field D on M . Since c

and D are locally equivalent to c̄ and D̄ and c̄ = cD̄, we have c = cD as desired.

We can moreover use exploit Leistner and Nurowski’s technical criterion (Lemma 1.6.15)

to show that the set of real-analytic generic 2-plane fields D such that Hol(g̃D) has holonomy

equal to G2 is in a suitable sense dense in the set of all such (local) plane fields.

Subsection 1.6.3 (see Proposition 1.6.14 and Lemma 1.6.15) showed that to prove that

a real-analytic ambient metric g̃D of a real-analytic, generic 2-field D on a 5-manifold M

has holonomy equal to G2 (and not a proper subgroup thereof), it suffices to show that (1)

there is some nonempty open subset of M on which cD is not conformally Einstein, (2) the

manifold does not admit a pair (g, L) as in the statement of Lemma 1.6.15, and (3) g̃D is

not locally symmetric.

Recall also that by Proposition 1.5.6 there is a (local) quasi-normal form for a generic

2-plane field D: For any s ∈ M , there are local coordinates (x, y, p, q, z) mapping s to the

origin and a function F (x, y, p, q, z) defined on that coordinate chart such that the plane

field is given there by span{∂q, ∂x + p∂y + q∂p + F∂z}. By Proposition 1.5.4 any such F (in

particular defined in a neighborhood of the origin) for which Fqq is nonvanishing defines

such a plane field DF . We will show that both of the conditions in Lemma 1.6.15 define

pointwise algebraic conditions on the Weyl and Cotton tensors of an arbitrary representative

of the induced conformal class c. Passing to the local coordinates of the quasi-normal form,

these impose algebraic conditions on the space J7
0 of 7-jets of functions F at the origin; for

each condition, we will show that the set on which it is satisfied is contained in a proper

algebraic subvariety of J7
0 . This will yield the following genericity result.

Theorem 3.1.7. There is a dense subset S ⊂ J7
0 with the following property: If F is a

real-analytic function (for which Fqq is nonvanishing and) whose 7-jet j7
0(F ) lies in S, and if

g̃F is any real-analytic ambient metric of the conformal class induced by the generic 2-plane

field DF , then Hol(g̃F ) = G2.
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Theorem 3.1.2 says that the (global) holonomy of a real-analytic ambient metric g̃D

induced by a generic 2-plane field on an oriented manifold is contained in G2, so with

the preceding theorem it shows that generically (in the sense made precise by the latter

theorem), the (global) holonomy of a real-analytic ambient metric induced by a generic

2-plane field on an oriented manifold is equal to G2.

Before giving the proof of Theorem 3.1.7, we develop the constructions involved in the

mentioned algebraic conditions.

First, fix a generic 2-plane field D on a 5-manifold M , and pick a representative g of the

induced conformal class cD. Define for any x ∈M the linear map Ψx : TxM×R→
⊗3 T ∗xM

by

Ψx(X,λ) := WabcdX
a + Cbcdλ,

where W and C as usual denote the Weyl and Cotton tensors of g. Recall that direct

computation gives that the Weyl and Cotton tensors of the arbitrary representative ĝ =

e2Υg ∈ cD are respectively Ŵ = e2ΥW and Ĉbcd = Cbcd−WabcdΥ
a. So, the image of Ψx, and

in the particular its rank, are independent of the choice of representative. The pointwise

condition corresponding to the local Einstein condition in Lemma 1.6.15 is that Ψx injective,

that is, that rank Ψx = 6.

Next, we define a condition on the Cartan curvature tensor A of D (see Subsection 1.5.4)

that turns out to be equivalent to part of the condition involving totally null 2-planes in

Lemma 1.6.15.

Definition 3.1.8. Let V be a vector space. A tensor B ∈ S4V∗ is 3-nondegenerate if the

only vector Z ∈ V for which B(·, Z, Z, Z) = 0 is Z = 0; otherwise, B is 3-degenerate.

Lemma 3.1.9. Let D be a generic 2-plane field on a 5-manifold M , fix x ∈ M , and let

W ∈ (
⊗4 T ∗xM)[2] be the Weyl tensor of the induced conformal class cD at x. Then, Ax is

3-degenerate iff there exists a nonzero null vector K ∈ TxM such that W (Y,K,K,X) = 0

for all Y ∈ TxM and X ∈ K⊥.

Proof. (⇒) Suppose Ax is 3-degenerate, say, that the nonzero vector Z ∈ Dx satisfies

Wx(·, Z, Z, Z) = 0. Then take K := Z; it is nonzero by hypothesis and null because D
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is totally null. By Lemma 1.5.11, to show that W (Y,K,K,X) = 0, it suffices to consider

just the images of arbitrary X ∈ K⊥ and Y ∈ TxM under the quotient map q−1 : TxM →

TxM/D⊥x . Recall from Lemma 1.5.9 that for any orientable subset U ⊂M there is a natural

isomorphism τ : D|U→ (TM/D⊥)[−1] defined up to sign; fix a sign arbitrarily. We may write

q−1(Y )|U= τ(V ) for some V ∈ D|U , and by orthogonality, the image of q−1(X) = sτ(Z|U )

for some constant s. Then, on U ,

W (Y,K,K,X) = W (τ(V ), Z, Z, sτ(Z)) = −sA(V,Z, Z, Z) = 0.

Since the choice of U is arbitrary, this identity holds everywhere.

(⇐) Conversely, suppose that K satisfies W (Y,K,K,X) = 0 for all X ∈ K⊥ and Y ∈ TxM .

If K ∈ Dx, then set Z := K and choose X ∈ K⊥ and Y ∈ TxM such that q−1(X) = τ(Z)

and q−1(Y ) = τ(V ); then, the computation in (⇒) with s = 1 gives A(V,Z, Z, Z) = 0. If

K 6∈ D, then because D⊥x − Dx contains no null vectors, K ∈ TxM − D⊥x , so we may write

q−1(K) = τ(Z) for some (nonzero) Z ∈ D. Taking X = Z and letting Y ∈ D be arbitrary

then gives A(·, Z, Z, Z) = 0.

We can now translate the conditions in Lemma 1.6.15 into pointwise conditions on Ψ

and A:

Lemma 3.1.10. Let D be a real-analytic, generic 2-plane field, and let g̃D be a real-analytic

ambient metric of the induced conformal class. If there are points x, y ∈ M such that

Ψx is injective and Ay is 3-nondegenerate, then Hol(g̃D) = G2 if M is orientable, and

Hol(g̃D) = G2×Z2 if M is nonorientable.

Proof. First, assume that M is simply connected. We show that the conditions on Ψx and

Ay in the statement are incompatible with each of the conditions in Lemma 1.6.15; then

that lemma will prove the claim in that case.

First, if A is 3-nondegenerate, then it is nonzero, and thus so is W . Then, by Proposition

1.2.13 and (1.25), on M ⊂ M̃ the ambient curvature satisfies

TMRijkl,M = −2Rijkl = −2Wijkl 6= 0.

So, R̃IJKL,M 6= 0, that is, g̃D is not locally symmetric.
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Second, let g be an arbitrary representative of the induced conformal class cD, and

suppose there is a dense subset U ⊆M such that cD|U admits a local Einstein representative

in a neighborhood about every point, say, for an arbitrary point x, the local metric ĝ :=

e2Υg|V on the neighborhood V of x. Now, an Einstein metric is Cotton-flat: If g̃ has Einstein

constant λ, then Ĉbcd = 2Pb[c,d] = 2λgb[c,d] = 0. Then, 0 = (Ĉx)bcd = (Cx)bcd−Υa(Wx)abcd =

Ψx(−(dΥ)], 1), so Ψx is not injective. Since x is arbitrary, and the injectivity of Ψx is

independent of the choice of conformal representative, Ψx is not injective for each x ∈ U .

Then, because U is dense and injectivity is an open condition, Ψx is injective nowhere.

Finally, if g̃D admits a parallel, totally null 2-plane field, then A is 3-degenerate every-

where.

Now, suppose that M is not simply connected, and consider the universal cover ( ¯̃M, ¯̃gD)

of (M̃, g̃D) and arbitrary lifts x̃ and ỹ of x and y. As in the proof of 3.1.2, ¯̃gD is an ambient

metric of the conformal class induced by the 2-plane field (Tπ)−1(D) on the universal cover

M̄ of M , where π : M̄ → M is the covering map. Since Ψ• and A• both depend only on

local data, Ψx̃ is injective because Ψx is, and Aỹ is 3-nondegenerate because Ay is. So, by

the simply connected case, Hol( ¯̃M, ¯̃gD) = G2. Then, by [Pet06, Section 8.3.1], Hol( ¯̃M, ¯̃gD) is

equal to the restricted holonomy Hol0(M̃, g̃D) ≤ Hol(M̃, g̃D), and thus Theorem 3.1.2 gives

that Hol(M̃, g̃D) = G2 if M is orientable and Hol(M̃, g̃D) = G2×Z2 if not.

(Proof of Theorem 3.1.7). Recall that Nurowski’s formula (A.1) gives a representative gF

of the conformal class induced by DF such that (gF )ab and (gF )ab are both polynomial in

F , derivatives of F of order no more than 4, and F−1
qq . The Weyl and Cotton tensors of a

metric are polynomial in the components of the metric, those of its inverse, and those of its

derivatives of degree no more than 2 and 3, respectively, so the Weyl and Cotton tensors of

gF are polynomial in F , F−1
qq , and the derivatives of F of order at most 6 and 7, respectively.

So, to prove the claim, it suffices to show that the subsets of the jet space J7
0 defined by

the conditions on Ψ0 and A0 are contained in proper algebraic subvarieties of that space:

Then, the complement of the union of those varieties is Zariski-open and hence dense (in

the standard topology), and by Lemma 3.1.10, any function F whose 7-jet, j7
0(F ), lies in

that complement satisfies Hol(g̃F ) = G2 (provided again that we restrict to F satisfying
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Fqq 6= 0).

Represent Ψ0 as a matrix in some basis; its rank is less than 6 iff the determinants of

each of its 6 × 6 submatrices vanish, which defines an algebraic variety. To show that it

is proper, we show that its complement is nonempty. In particular, we show that Ψ0 is

injective for the functions F [a, b] considered by Leistner-Nurowski (see Example 1.6.13) for

which a3 6= 0 and a4 6= 0. Suppose that for such a function, (Ψ0)bcd = 0; then, specializing

to {bcd} = {415} gives 0 = (Ψ0)415 = WabcdX
a + Cbcdλ. Consulting the tensorial data in

Appendix A.2 that Leistner and Nurowski computed for the metrics gF [a,b] gives that this

condition simplifies to A3X
1 = 0. Since a3 6= 0 and a4 6= 0, A3 6= 0 and A4 6= 0, and so

X1 = 0. Similarly specializing {bcd}, in order, to {115}, {413}, {113}, {414}, and {114}

respectively shows that X4, λ, X3, X2, and X5 are also all zero, and so that Ψ0 is injective

as desired.

We now address the condition on A0, which in this proof we henceforth denote just A:

Specializing the formula in Subsection 1.5.2 to the origin gives that D0 = span{∂q, ∂x}. In

the coordinates (u, v) dual to (∂q, ∂x), the homogeneous polynomial defined by A is

A(Z,Z,Z, Z) = A(0)u4 + 4A(1)u3v + 6A(2)u2v2 + 4A(3)uv3 +A(4)v4

for some coefficients A(k) ∈ R, k ∈ {0, . . . 4}. Now, A is 3-nondegenerate iff the equations

A(∂q, Z, Z, Z) = 0 and A(∂x, Z, Z, Z) = 0 have a common nonzero solution Z. In terms of

the dual basis, these conditions become

 A(0)u3 + 3A(1)u2v + 3A(2)uv2 +A(3)v3 = 0

A(1)u3 + 3A(2)u2v + 3A(3)uv2 +A(4)v3 = 0.

The 5-tuple (A(k)) of coefficients for which this system admits a nonzero (real) solution is

contained in the set of 5-tuples for which the system admits a solution (u, v) ∈ C2−{(0, 0)},
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which is in turn characterized by the vanishing of the resultant of the system:

det



A(0) 3A(1) 3A(2) A(3) 0 0

0 A(0) 3A(1) 3A(2) A(3) 0

0 0 A(0) 3A(1) 3A(2) A(3)

A(1) 3A(2) 3A(3) A(4) 0 0

0 A(1) 3A(2) 3A(3) A(4) 0

0 0 A(1) 3A(2) 3A(3) A(4)


= 0. (3.2)

We show that the map J7
0 → S4D∗0 sending a 7-jet of D (equivalently, F ) to its symmetric

4-form A is surjective by perturbing the flat model, F (x, y, p, q, z) = q2, at a high order.

Then, since (3.2) is nontrivial on S4D∗0, that equation defines a proper subvariety of J7
0 .

We thus henceforth specialize to functions F (x, y, p, q, z) = q2 + f , where f vanishes

to order 6. (If a function h vanishes to order m in those variables together, denote h =

0 mod O(|x|m).) We first compute for such functions the representative gF ∈ cF given

by Nurowski’s formula (A.1), up to second order. Recall that D denotes the first-order

differential operator ∂x + p∂y + q∂p + F∂q; precomputing the derivatives of F that appear

in (A.1) gives that

Fq= 2q

Fqq= 2

Fqqqq= fqqqq

DFqqq= fqqqx

D2Fqq= fqqxx


mod O(|x|3),

and that all other derivatives of F that occur vanish modulo O(|x|3). Substituting in (A.1)

leaves just

gF = −3(D2Fqq)F
3
qq(ω̃

1)2 + 6(DFqqq)F
2
qqω̃

1ω̃2 + 30F 4
qqω̃

1ω̃4

− 3FqqFqqqq(ω̃
2)2 + 30F 3

qqω̃
2ω̃5 − 20F 4

qq(ω̃
3)2 +O(|x|3),

where the coframe (ω̃a) is given in Appendix A.1. Substituting for the ω̃a (and again
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discarding the terms that vanish modulo O(|x|3)) gives

gF = −80q2 dx2 + 160q dx dp− 480p dx dq + 240 dx dz

− 24fqqxx dy
2 + 480 dy dq + 24fqqqx dy dz − 320 dp2 − 6fqqqq dz

2 +O(|x|3).

In order to compute A for this F , we compute explicitly the isomorphism τ0 : D0 →

(T0M/D⊥0 )[−1] (up to overall scale); trivializing the codomain using gF defines an isomor-

phism D0 → T0M/D⊥0 , which we also denote τ0. Up to a constant factor, the gF -skew

trivialized isomorphism µ0 is given by

µ0 :

 ∂q 7→ − dx

∂x 7→ dq
.

Raising indices gives that the trivialized isomorphism ψ0 is given up to a constant factor by

ψ0 :

 dx 7→ 2∂z + D⊥

dq 7→ ∂y + D⊥
.

Composing then gives that, again up to a constant factor, τ0 is given by

τ0 :

 ∂q 7→ −2∂z + D⊥

∂x 7→ ∂y + D⊥
.

So, using the definition of A (Subsection 1.5.4) gives again up to an overall constant factor

that

A(0) = 4W (∂q, ∂z, ∂q, ∂z)

A(1) = −2W (∂q, ∂z, ∂q, ∂y)

A(2) = −2W (∂q, ∂z, ∂x, ∂y)

A(3) = W (∂q, ∂y, ∂x, ∂y)

A(4) = W (∂x, ∂y, ∂x, ∂y).

Computing W (at 0) in coordinates using the previous formula for gF modulo O(|x|3) gives
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up to some (overall) constant factor that

A(0) = fqqqqqq(0)

A(1) = fqqqqqx(0)

A(2) = fqqqqxx(0)

A(3) = fqqqxxx(0)

A(4) = fqqxxxx(0).

(3.3)

For f as above, we may thus identify A with (∇4fqq)(0)|D0 , where (∇4fqq)(0) denotes the

symmetric 4-tensor defined by the coefficients of the order 4 Taylor polynomial of fqq at 0,

and ·|D0 denotes restriction to D0. Since we may prescribe those coefficients freely when

choosing f , (3.3) shows that the map J7
0 → S4D∗0 is surjective as desired, completing the

proof.

Remark 3.1.11. Because of the explicit computational nature of the conditions, it is easy

(albeit tedious) to generate large new classes of metrics with holonomy equal to G2.

3.1.2 Einstein Nurowski conformal structures

If D is a real-analytic field such that cD contains an Einstein representative g, then a real-

analytic ambient metric g̃D inherits extra geometric structure, including a natural foliation

by hypersurfaces which in turn admit structures depending on the sign of the Einstein

constant of g. We first recall definitions of some of the structures that occur in this setting.

Definition 3.1.12. An almost complex structure on a manifold N is a bundle map

J : TN → TN satisfying J2 = − idTN . An almost complex structure J is compatible

with a given pseudo-Riemannian metric γ on N if γ(JA, JB) = γ(A,B), that is, if Jab is

antisymmetric; in that case, hab := γab − iJab is a hermitian metric. If moreover ∇J = 0,

then there is a (unique) complex structure on N suitably compatible with J. In this case, the

pair (γ, J) is called a Kähler structure on N , and (N, γ, J) is called a Kähler manifold.

In particular, a Kähler manifold (N, γ, J) of signature, say, (p, q), is simultaneously a

pseudo-Riemannian manifold (with metric γab), a complex manifold with pseudo-Hermitian
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metric hab, and a symplectic manifold (with symplectic form Jab), and these structures are

compatible in the sense that the sense that J is compatible with γ and h can be recovered

from those two objects using the given formula. (In fact, any of these three objects can be

recovered from the other two.) One can show that if (N, γ, J) is Kähler, then p and q must

both be even. If (N, γ) admits a Kähler structure defined by a parallel almost complex

structure J, then Hol(γ) is contained in the stabilizer of Jx in O(γx) = O(p, q), namely,

U(p2 ,
q
2).

Changing some signs yields analogous structures.

Definition 3.1.13. An almost paracomplex structure on a manifold N is a bundle map

K : TN → TN satisfying K2 = idTN such that the ±1-eigenbundles have the same rank.

An almost complex structure K is compatible with a given pseudo-Riemannian metric γ

on N if γ(KA,KB) = −γ(A,B), that is, if Kab is antisymmetric. If moreover ∇K = 0, then

K arises from some paracomplex structure on TN (a paracomplex structure is an analog of

a complex structure—see [CFG96]), the pair (γ, J) is called a para-Kähler structure on

N , and (N, γ, J) is called a para-Kähler manifold.

A para-Kähler manifold is simultaneously a pseudo-Riemannian manifold, a paracom-

plex manifold, and a symplectic manifold, and those structures are compatible in a sense

analogous to that in the discussion of Kähler structures above. If (N, γ,K) is a para-Kähler

manifold, then necessarily its dimension is even, say, 2m, and γ has neutral signature (m,m).

If (N, γ) admits a para-Kähler structure defined by a parallel almost paracomplex struc-

ture K, then Hol(γ) is contained inside the stabilizer of Kx in O(γx) = O(m,m), namely,

GL(m,R).

We can specialize Proposition 2.1.14 about the ambient metrics of Einstein conformal

structures to the case of such structures induced by real-analytic, generic 2-plane fields D.

Proposition 3.1.14. Let D be a real-analytic, generic 2-plane field on an orientable 5-

manifold whose induced conformal structure cD admits an Einstein representative with Ein-

stein constant λ, and let Ξ ∈ Γ(TM̃) be the corresponding parallel ambient vector field (see

Proposition 2.1.14).
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• If λ < 0, then Ξ is spacelike, Hol(g̃can
D ) ≤ SU(1, 2), and M̃ admits a natural foliation by

6-dimensional leaves, each of which admits a natural signature-(2, 4) Kähler structure

compatible with the pullback metric.

• If λ = 0 (i.e., g is Ricci-flat), then Ξ is lightlike, and Hol(g̃can
D ) ≤ SL(2,R) o N ,

where N is the distinguished nilpotent subgroup (1.52) of the parabolic subgroup P <

G2 (this is just the subgroup of G2 preserving a null vector). Also, M̃ admits a

parallel partial flag structure of type (1, 3, 4, 6), which hence defines nested foliations

whose leaves have dimensions 1, 3, 4, and 6; the 1- and 3-dimensional leaves are

totally isotropic submanifolds, and the 4- and 6-dimensional leaves are coisotropic.

Furthermore, M admits natural nested foliations by totally isotropic 2-dimensional

leaves and coisotropic 3-dimensional leaves.

• If λ > 0, then Ξ is timelike, Hol(g̃can
D ) ≤ SL(3,R), and M̃ admits a natural foliation by

6-dimensional leaves, each of which admits a natural para-Kähler structure compatible

with the pullback metric.

Also, if λ 6= 0, then g̃can
D can be locally realized as a product metric.

Leistner and Nurowski allude to the holonomy containments in the cases for which

λ 6= 0 [LN10, Remark 5].

Proof. The relationship between the sign of λ and g̃can
D (Ξ,Ξ) and the result about the local

product decomposition were shown in 2.1.14.

Let [Ξ] denote the line spanned by Ξ, and let Φ̃ ∈ Γ(Λ3T ∗M̃) denote the parallel ambient

3-form induced by D as in the proof of Theorem 3.1.2. Since [Ξ] is parallel, so is the 6-plane

field [Ξ]⊥, and thus it defines a foliation F of M̃ by 6-dimensional leaves. For any leaf

L ∈ F , let ιL denote the inclusion L ↪→ M̃ .

We know from Theorem 3.1.2 that Hol(g̃can
D ) ≤ G2. So, since Ξ is also parallel, Hol(g̃can

D )

is contained in the stabilizer in G2 of an arbitrary nonzero vector X ∈ R3,4 such that 〈X,X〉

has the same sign as g̃can
D (Ξ,Ξ) = −2λ. If λ < 0, this is just the stabilizer in G2 of a point

in the sphere S2,4, which one can compute is SU(1, 2). If λ = 0, this is just the stabilizer in
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G2 of a null vector, which is SL(2,R) oN . If λ > 0, this is the stabilizer in G2 of a point

in the sphere S3,3, which is SL(3,R).

Suppose now that λ < 0 and consider an arbitrary leaf L ∈ F . Since g̃can
D (Ξ,Ξ) > 0, the

pullback ι∗Lg̃
can
D is a signature-(2, 4) metric. Now, because both Ξ and Φ̃ are parallel, the

2-form Ξy Φ̃ is parallel, and because L is totally geodesic (since it is a leaf of a foliation

of a parallel plane field), the skew endomorphism J := [ι∗L(Ξy Φ̃)]] ∈ Γ(Endskew(TL)) is

parallel with respect to ι∗Lg̃
can
D . Computing an example in Im Õ and using the transitivity

of the action of G2 on S2,4 ⊂ Im Õ shows that J2 = − id, so the pair (ι∗Lg̃
can
D ,K) defines

an almost Hermitian structure on L; since J is parallel it in fact defines a signature-(2, 4)

Kähler structure on L.

The case λ > 0 is similar. Since g̃can
D (Ξ,Ξ) > 0, ι∗Lg̃

can
D is a signature-(3, 3) metric. Now,

the skew endomorphism K defined by the same formula as for J in the case λ < 0 satisfies

K2 = id and the ±1-eigenspaces of K at any (equivalently, every) point in p both have

dimension 3, so the same reasoning as in the previous case shows that (ι∗Lg̃
can
D , ω) defines a

para-Kähler structure on L.

Finally suppose that λ = 0. Then, the equation g̃can
D ([Ξ], [Ξ]) = 0 implies that [Ξ] ⊂ [Ξ]⊥,

and so the foliation by integral curves of [Ξ] is nested inside the foliation F of M̃ defined

by [Ξ]⊥. Computing an example in Im Õ and using the transitivity of G2 on the null cone

N ⊂ Im Õ shows that (Ξy Φ̃) ∧ (Ξy Φ̃) ∧ (Ξy Φ̃) = 0, so the pullback of Ξy Φ̃ to a leaf

of F does not define a symplectic structure as it does when λ 6= 0. There is, however, a

substitute structure for this case: Checking again an example in the flat model shows that

(Ξy Φ̃) ∧ (Ξy Φ̃) is decomposable and null, so define the trivector field

∆ := [∗̃[(Ξy Φ̃) ∧ (Ξy Φ̃)]]]]] ∈ Γ(Λ3TM̃).

(Here, ]]] just indicates raising of all three indices.) Since Ξ and Φ̃ are parallel, and ∗̃

commutes with covariant differentiation, ∆ too is parallel, and so it defines a parallel, null

3-plane field [∆]. Checking an example shows that [Ξ] ⊂ [∆] ⊂ [∆]⊥, yielding a refined

filtration,

[Ξ] ⊂ [∆] ⊂ [∆]⊥ ⊂ [Ξ]⊥,

which we may view as a bundle of incomplete flags of null and conull subspaces. Each plane
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field in the filtration is parallel, so it defines nested foliations of M̃ by leaves of dimensions

1, 3, 4, and 6.

To see the claim about M it is enough to consider the restrictions of the above data

to G. Since λ = 0, computing directly using Example 2.1.8 gives that Ξ = t−1∂ρ, and so

[Ξ]|G= span{∂ρ}|G . So, each leaf is transverse to G, and so the intersections of the leaves in

the nested foliations of M̃ with G comprise nested foliations of G by leaves of dimensions 2,

3, and 5. The normal form of g̃can
D shows that, with respect to the decomposition realizing

M̃ as a subset of R+×M×R, we have [Ξ]⊥ = TM⊕span{∂ρ}, the 6-dimensional plane field

[Ξ]⊥|G⊂ TM̃ |G is just TM |G⊕ span{∂ρ}|G . So the 5-dimensional plane field is just TM |G⊂

TG, and the leaves of the corresponding foliation are just the submanifolds {t = t0} ⊂ G;

regarded as sections of G → M , these are, respectively, just the Ricci-flat representatives

t20g of c homothetic to g. By homogeneity, the projections of the foliations of M × {t0} to

M by 2- and 3-dimensional leaves by the projection M × {t0} do not depend on t0, and so

they determine foliations of M by 2- and 3-dimensional leaves naturally associated to the

Ricci-flat representative g ∈ c. Since [∆]|G is null, consulting again the normal form of the

ambient metric gives that the 2-dimensional leaves are totally null.

Remark 3.1.15. If λ 6= 0, we can use the Kähler or para-Kähler structures on the leaves

to recover local versions of the holonomy containments asserted in the proposition. Since

g̃can
D (Ξ,Ξ) 6= 0, we have [Ξ]⊥ ∩ [Ξ] = {0}, so the de Rham theorem guarantees that near an

arbitrary point p ∈ M̃ , some neighborhood (U, g̃can
D |U ) of p in (M̃, g̃can

D ) can be realized as

a product (N, g6) × (J,±ds2), where N can be identified with an open set in the leaf L of

F through p and g6 can be identified with pullback ι∗Lg̃
can
D to that set, J is an interval, and

± is the opposite of the sign of λ. In particular,

Hol(g̃can
D |U ) ∼= Hol(g6)×Hol(±ds2) ∼= Hol(g6).

Remark 3.1.16. It can be shown efficiently, independently of the arguments in the above

proof that the metrics on the 6-dimensional leaves L admit Kähler or para-Kähler structures,

that the (parallel) 2-forms ι∗L(Ξy Φ̃) define symplectic structures when λ 6= 0: By Remark
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3.1.4, up to a nonzero constant factor we have

(Ξy Φ̃) ∧ (Ξy Φ̃) ∧ Φ̃ = g̃can
D (Ξ,Ξ) ṽol = −2λ ṽol,

where ṽol is the volume form of g̃can
D . Then, by definition of J (and lowering an index and

regarding it as a 2-form), contracting Ξ into both sides and pulling back to L gives that

J∧ J∧ J is a nonzero multiple of the volume form of the metric on the leaf, and likewise for

K.

3.2 Integrability conditions for parallel tractor tensors

The Parallel Tractor Extension Theorem can be used to generate a large number of in-

tegrability conditions for the existence of parallel tractor tensors. The discussion in this

section generalizes a similar observation about standard tractors in [Gov, §3] which uses

just the tractor curvature instead of the full ambient curvature, and some results of [Lei04]

for tractor forms. In the notation of this section, the observation there covered the case in

which r = 1 and ABC1 · · ·Cs = abc1 · · · cs.

3.2.1 Odd dimension

First suppose n odd. Fix a parallel tractor tensor χ ∈ Γ(
⊗r T ∗); the theorem guaran-

tees the existence of an ambient extension χ̃ ∈ Γ(
⊗r T ∗M̃) of χ satisfying ∇̃χ̃ = O(ρ∞).

Commuting covariant derivatives gives R̃.χ̃ = O(ρ∞). Here, we regard R̃ as a section of

Λ2T ∗M̃⊗End(TM̃), and . denotes the (tensorial) bundle map induced by the natural action

of End(TM̃) on
⊗r T ∗M̃ ; explicitly:

(R̃.χ̃)ABI = −
r∑

u=1

R̃ Q
AB Iu

χ̃I1···Iu−1QIu+1···Ir . (3.4)

Restricting to G gives

[(R̃|G).χ]ABI = 0, (3.5)

where . now denotes the restriction of the above action to sections restricted to G. We

can regard R̃|G as a tractor tensor and thus view (3.5) as a condition on the tractor χ.

Specializing the free multi-index AB realizes that condition more concretely. For example,
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taking A and B to be tangent to G recovers the fact that the tractor curvature annihilates

the tractor tensor χ. At least for tractor r-forms, the remaining nontrivial choice up to

symmetry, AB = ∞b, just yields a condition that is a differential consequence of that

annihilation. (Taking either index to be 0 makes the left-hand side zero.)

If we furthermore fix a representative g ∈ c, specializing I according to the induced

splitting just realizes the integrability conditions as tensorial conditions on the tractor com-

ponents; specializing to tractor r-forms recovers formulas of Leitner [Leitner]. Equation

(6.2) of [FG] gives the ambient curvature along G can be realized explicitly in terms of

various tensors associated to (M, g):

R̃ijkl|M = Wijkl

R̃∞jkl|M = Cjkl

R̃∞jk∞|M = −(n− 4)−1Bjk;

here, W , C, and B are respectively the Weyl, Cotton, and Bach tensors of g. So, for

example, if χ is a tractor r-form, with components (χ−)i2···ir , (χ0)i1···ir , (χ∓)i3···ir , and

(χ+)i2···ir as in (2.1), the condition determined above by AB = ab becomes

(W.χ−)abi2···ir = 0

(W.χ0)abi1···ir = −rC[i1|ab|(χ−)i2···ir]

(W.χ∓)abi3···ir = Cqab(χ−)qi2···ir

(W.χ+)abi2···ir = Cqab(χ0)qi2···ir + (r − 1)C[i2|ab|(χ∓)i3···ir]

, (3.6)

where by raising an index we regard W as a section of
⊗2 T ∗M ⊗End(TM). Here, . is the

tensorial bundle map

Γ(
⊗d T ∗M ⊗ End(TM))× Γ(

⊗r T ∗M)→ Γ(
⊗d T ∗M ⊗

⊗r T ∗M)

induced by the natural action of End(TM) on
⊗r T ∗M analogous to the map . defined in

(3.4): More generally, define the map . for simple tensor products µ ⊗ ϕ ∈ Γ(
⊗d T ∗M ⊗

End(TM)) and β ∈ Γ(
⊗r T ∗M) by (µ ⊗ ϕ).β = µ ⊗ (ϕ · β), where · denotes the natural

action of Γ(End(TM)) on Γ(
⊗r T ∗M), namely,

(ϕ · β)i1···ir = −
r∑

u=1

ϕquiβi1···iu−1qiu+1···ir .
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Unwinding the definitions then gives, explicitly,

(W.β)abj1···jl = −
l∑

u=1

W q
ab ju

βj1···ju−1qju+1···jl .

(If r = 1, in which case a tractor form has no component χ∓, the above condition involving

W.χ∓ disappears, as does the term involving χ∓ on the right-hand side of the last equation.)

These conditions can be used to recover some facts about structures encoded by parallel

tractors. For example, if (M, c) is almost Einstein, let U be the (dense) subset of M on which

the Einstein scale is nonsingular. In the splitting induced by the Einstein representative of

c|U , the corresponding parallel tractor form on U is (1, 0,−λ). Then, the third equation

gives that C|U= 0, and thus by continuity C = 0, recovering the fact that almost Einstein

conformal structures are conformally Cotton-flat.

For tractor tensors of irreducible type, we may combine the conditions produced as

above with the BGG splitting operator for that type to produce integrability conditions for

a parallel tractor tensor χ in terms of just its projecting parts α (which, recall, for irreducible

type determines the full tractor tensor). Again for forms, this yields the conditions:

(W.α)abi2···ir = 0

(W.dα)abi1···ir = −rC[i1|ab|αi2···ir]

(W.d∗α)abi3···ir = (n− r + 2)Cqabαqi2···ir

(W.�α)abi2···ir = 1
rC

q
ab(dα)qi2···ir + r−1

n−r+2C[i2|ab|(d
∗α)i3···ir]

,

where � is the operator in [Lei04, Section 4].

Similarly, the condition determined by AB =∞b becomes

(C.χ−)bi2···ir = 0

(C.χ0)bi1···ir = −(n− 4)−1rBb[i1(χ−)i2···ir]

(C.χ∓)bi3···ir = (n− 4)−1B q
b (χ−)qi3···ir

(C.χ+)bi2···ir = (n− 4)−1[B q
b (χ+)qi2···ir + (r − 1)Bb[i2(χ∓)i3···ir]]

. (3.7)

Here, . is the tensorial action of C on Γ(
⊗l T ∗M) analogous to the above action for W :

Raising an index allows us to regard C as a section of T ∗M ⊗ End(TM). The action . is

again the one induced by that of Γ(End(TM)) on covariant tensors:

(C.β)bj1···jl = −
l∑

u=1

C q
b ju

βj1···ji−1qju+1···jl .
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The above systems of integrability conditions were produced using a somewhat different

method in [Leitner, Section 5].

Remark 3.2.1. Computing directly shows that the conditions (3.6) can be written compactly

using the bundle map Fχ defined at the beginning of Subsection 2.2.1, as

Fχ(C(X,Y )) = W (X,Y ).χ,

where X and Y are arbitrary sections of TM , W is regarded as a (3, 1)-tensor, so that

W (X,Y ) ∈ End(TM), and . denotes the action of End(TM) on ΛrT ∗ defined by acting

separately on its components in Λ∗T ∗M determined by the splitting with respect to the

representative g ∈ c.

Similarly, we may write the system (3.7) as

Fχ(B(X)) = (4− n)C(X).χ,

where X is an arbitrary section of TM , and C is regarded as a (2, 1)-tensor, so that C(X) ∈

End(TM).

Now, differentiating R̃.χ̃ (see (3.4)) arbitrarily many, say, s, times and then restricting

to ρ = 0 gives [(∇̃sR̃)|G ].χ = 0, where . now denotes the restriction of the above action to

sections restricted to G. Now, we can regard (∇̃sR̃)|G as a section of a section of a suitably

weighted tractor tensor bundle [FG, Proposition 6.5], and thus again regard

[(∇̃sR̃)|G ].χ = 0

as a strictly tractor equation.

As above, we can produce systems of integrability conditions by specializing the free

indices on R̃ and can furthermore explicitly write the conditions in terms of tractor compo-

nents in a splitting induced by a choice of representative g ∈ c. For example, when s = 1, in

the special case of tractor forms, specializing all the free indices to lie tangent to the factor

M in the splitting M̃ ↔ R+ ×M × R induced by a choice g ∈ c gives (consulting equation
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(6.3) in [FG]) the conditions

(V.χ−)abci2···ir = 0

(V.χ0)abci1···ir = −rY[i1|abc|(χ−)i2···ir]

(V.χ∓)abci3···ir = Y q
abc(χ−)qi2···ir

(V.χ+)abci2···ir = Y q
abc(χ0)qi2···ir + (r − 1)Y[i2|ab|(χ∓)i3···ir]

,

where

Vijklm = Wijkl,m + gimCjkl − gjmCikl + gkmClij − glmCkij

Yjklm = Cjkl,m − P i
m Wijkl + (n− 4)−1(gkmBjl − glmBjk).

Raising the k indices, we may regard V and Y respectively as sections of Λ2T ∗M ⊗

End(TM) ⊗ T ∗M and T ∗M ⊗ End(TM) ⊗ T ∗M . In both cases, the actions . are again

those induced by the natural actions of Γ(End(TM)) on tensors.

We summarize the above observations in a proposition:

Proposition 3.2.2 (Tractor tensor integrability conditions, odd dimension n ≥ 3). Let

ABC1 · · ·Cs be a multi-index specialized according to the splitting Q↔ (0, q,∞) induced by

a choice of representative g ∈ c, and let g̃ be an ambient metric of c. If n odd, then for any

parallel tractor tensor χ,

[[(∇̃sR̃)|G ].χ]ABC1···CSI = 0,

defining a (necessary) condition for a tractor tensor to be parallel, and the resulting condition

is natural.

3.2.2 Even dimension

Now suppose n > 2 even. The Parallel Tractor Extension Theorem (Theorem 2.1.2) guar-

antees for a parallel tractor tensor χ the existence of an ambient extension χ̃ of χ satisfying

∇̃χ̃ = O(ρn/2−1). We may proceed as in the odd case, with two caveats: First, since ∇̃χ̃

may only vanish to finite degree, the left-hand side of the tractor equation [(∇̃sR̃)|G ].χ = 0

can only be specialized in ways that do not involve taking too many derivatives transverse
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to G: Commuting covariant derivatives gives (R̃.χ̃)ABI = O(ρn/2−1), A 6=∞, B 6=∞

(R̃.χ̃)∞BI = O(ρn/2−2), B 6=∞
.

We are thus only guaranteed that [(∇sR̃)|G .χ]ABIC1···Cs = 0 if ∞ occurs in the multi-index

ABC1 · · ·Cs at most n
2 −2 times, so in this discussion we henceforth assume that inequality

holds. Second, for a general even-dimensional conformal structure, some components of

the restrictions of covariant derivatives of the ambient curvature depend on the choice of

ambient metric. Restricting to M ⊂ M̃ and expanding gives

(R̃.χ̃)ABI,C1···Cs =

(
−

r∑
u=1

R̃ Q
AB Iu

χ̃I1···Iu−1QIu+1···Ir

)
,C1···Cs

= −
r∑

u=1

R̃ Q
AB Iu,C1···Csχ̃I1···Iu−1QIu+1···Ir .

Letting L be the index that replaces Q when it is lowered; then, the maximum strength of

an index of a component R̃ABLIu,C1···Cs independent of the ambiguity is 3 + ||ABC1 · · ·Cs||,

and [FG, Proposition 6.2] shows that this component is independent of the choice of ambient

metric if ||ABLIu, C1 · · ·Cs|| ≤ n+1. These observations allow us to generalize Proposition

3.2.2 to arbitrary dimension n > 2.

Proposition 3.2.3 (Tractor tensor integrability conditions, general dimension n ≥ 3). Let

χ be a parallel tractor tensor, let ABC1 · · ·Cs be a multi-index specialized according to the

splitting Q↔ (0, q,∞) induced by a choice of representative g ∈ c, and let g̃ be an ambient

metric of c. If n odd, or if n > 2 even and ||ABC1 · · ·Cs|| ≤ n− 2, then

[[(∇̃sR̃)|G ].χ]ABC1···CSI = 0.

Moreover, the expression on the left-hand side is independent of the choice of ambient metric.

Proof. By the above observations, the conclusion holds if we additionally assume that ∞

can occur in ABC1 · · ·CS at most n
2 − 2 times. By the condition on the strength in the

hypothesis, it can occur at most n
2 − 1 times. If it holds exactly n

2 − 1 times, then the

remaining indices must all be zero, in which case the component is zero by Proposition

1.2.13.
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For example, if n = 4, then this construction does not yield any conditions for multi-

indices containing ∞. By the discussion before the proposition, the above formula for the

conditions for a tractor form associated to the multi-index ABC = abc do not apply for

n = 4 (by the proposition, however, they do apply for n = 3 and n ≥ 5); indeed, the tensor

Y that occurs in those formulas is not defined for n = 4.

3.3 Outlook: Parallel extension and special holonomy

The Parallel Tractor Theorem and its application to G2 holonomy raise a battery of new

questions. For example, Berger’s list contains the exceptional holonomy group Spin(3, 4),

whose role in 8-dimensional geometry is formally analogous to that of G2 in 7-dimensional

geometry. This similarity is especially clear in terms of the constructions in Chapter 1 of

this dissertation. Example 1.1.25 shows that generic 3-plane fields E on 6-manifolds N

(here, E is generic if it satisfies [E,E] = TN) can be realized as (normal, regular) parabolic

geometries of type (spin(3, 4), Q). Here, SO(3, 4) acts naturally and transitively on the 6-

dimensional projective subvariety Gr0(3,R3,4) of the hyperbolic Grassmannian Gr(3,R3,4)

comprising the null 3-planes in R3,4, and Q is the stabilizer of an arbitrary plane under that

action. The flat model of this geometry is a SO(3, 4)-invariant (nondegenerate) 3-plane field

on Gr0(3,R3,4).

Bryant employed the natural inclusion Spin(3, 4) ↪→ SO(4, 4) to assign to any generic

3-plane field E on a 6-manifold N a canonical signature-(3, 3) conformal structure cE on

N [Bry06]. One can then show that, analogously to Hammerl and Sagerschnig’s construction

(Theorem 3.1.1), if N is oriented, then the tractor bundle of cE admits a nonzero parallel

tractor 4-form of a particular algebraic type, namely, one whose stabilizer in SO(4, 4) is

Spin(3, 4).

In view of this construction, it is natural to attempt to proceed as done in this disser-

tation for generic 2-plane fields on 5-manifolds: restrict to an arbitrary real-analytic plane

field E, construct a real-analytic ambient metric g̃E for the induced conformal structure cE,

and apply the Parallel Tractor Extension Theorem to produce a parallel 4-form of the appro-

priate algebraic type on the ambient bundle, which would show that Hol(g̃E) ≤ Spin(3, 4).

(One surely expects again that generically, equality holds.) Because the underlying manifold
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N has even dimension, however, both steps of this construction involve technical obstacles

that do not occur in the analogous 2-plane field case. First, the Fefferman-Graham ambient

construction only guarantees a priori the existence of an ambient metric of cE Ricci-flat to

order 3. For general conformal structures of dimension n, the existence of ambient metrics

Ricci-flat beyond the critical order 1
2n is obstructed by the conformally-invariant natural

obstruction tensor (see Subsection 1.2.5); in fact, this tensor is precisely the obstruction to

the existence of ambient metrics Ricci-flat to infinite order in even dimension. So, a natural

first step in analyzing the plane fields E in this setting is determining for which fields the

obstruction vanishes. For such conformal structures, uniqueness of infinite-order ambient

metrics still fails at order 3, though any such real-analytic ambient metric is completely de-

termined up to diffeomorphism and extension by the choice of a single symmetric, tracefree

2-tensor at order 3 with prescribed divergence, but at least locally there always exists at

least one choice; see [FG, Remark 3.12]).

Even for such a real-analytic ambient metric, the Parallel Tractor Extension Theorem

(Theorem 2.1.2) a priori only guarantees the existence of an ambient extension of the tractor

4-form parallel to order 2. (Specializing Proposition 2.1.13 to the real-analytic case, however,

shows the existence of a bona fide parallel extension is obstructed only at this order, that

is, if there is an ambient extension of the tractor 4-form parallel to order 3, then there

exists one parallel to infinite order). Then, as observed for general tractor tenors on even

dimensional conformal manifolds in Section 2.2, the existence of a bona fide parallel ambient

extension may depend on the choice of ambient metric. Thus, the extension problem for

generic 3-plane manifolds on (oriented) 6-manifolds would involve analyzing the admissible

prescriptions of the ambiguity in the ambient metrics of the conformal structures cE.

It is a priori plausible that some induced conformal structures cE have non-vanishing

obstruction tensors and hence do not admit ambient metrics Ricci-flat to order greater than

3. We can, however, partially address this issue by expanding attention to generalized

ambient metrics g̃, which are defined as ambient metrics except that (1) we only require

that g̃ need only be C1 along G (but still insist that it be C∞ elsewhere on the ambient

manifold), and (2) g̃ must be Ricci-flat to infinite order, in the sense that all components

of derivatives of Ric(g̃) extend continuously across G and vanish there [FG]; an analogue of
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Theorem 1.2.10 holds for such metrics. By [FG, Theorem 3.10], for any representative of

a general conformal class of even dimension n, that conformal class admits a generalized

ambient metric g̃ in normal form with respect to g and which has an expansion of the form

∞∑
N=0

g̃(N) · (ρn/2 log |ρ|)N ,

where the tensors g̃(N) are smooth on the ambient space; if the underlying data is real-

analytic, g̃ is real-analytic in t, x, ρ, and ρn/2 log |ρ| everywhere, and is real-analytic in t,

x, and ρ everywhere except on G. As for (standard) ambient metrics in even dimension,

such a metric is determined to infinite order (and, when the analyticity hypothesis holds,

up to extension and diffeomorphism preserving G pointwise) by the prescription of a single

tensor subject to the same condition as before. Then, for any generalized ambient metric

(satisfying the analyticity hypothesis) of a conformal class induced by a real-analytic plane

field E, one can look for parallel ambient extensions of the corresponding parallel tractor

4-form, the existence of which would yield metrics of holonomy contained in Spin(3, 4). As

in the obstruction-flat case, it is plausible that it admits extensions for some choices of such

real-analytic ambient metrics but not others.

Several geometric structures that occur on even-dimensional pseudo-Riemannian mani-

folds are characterized by parallel tensors, including some whose existence is equivalent to

containment of the holonomy of the metric in certain proper subgroups of O(p, q); indeed,

with the exception of G2, every irreducible holonomy group in Berger’s List that can occur

in indefinite signature occurs only in even dimension (recall that ambient metrics always

have indefinite signature). One can then attempt to construct metrics with these addi-

tional structures using conformal structures and parallel extension as described for metrics

of holonomy contained in Spin(3, 4) as above.

For example, Čap and Gover have shown that a conformal structure has conformal holon-

omy contained in SU(p2 ,
q
2)—or equivalently, its tractor bundle admits a parallel complex

structure J compatible with the tractor metric—iff it is (locally) equivalent to the Fefferman

conformal structure of a CR manifold of hypersurface type [ČG10, Section 2.5]. So, one can

then investigate the conditions under which such a J, regarded as an adjoint tractor, on a

real-analytic Fefferman conformal structure admits a parallel ambient extension to a suit-
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ably Ricci-flat (possibly generalized) ambient manifold, which would thus have holonomy

contained in that special unitary group. Metrics with such holonomy are indefinite signature

analogues of Calabi-Yau metrics. (Some Fefferman conformal structures are obstruction-flat

and others are not, and so analysis of these structures in this setting varies as above.) See

the upcoming paper [GW11] for more details of the relationship between Fefferman confor-

mal structures and parallel tractor extension. In his Ph.D. thesis, Alt proved the analogous

result for conformal holonomy contained in Sp(p4 ,
q
4) ≤ SU(p2 ,

q
2) and Fefferman conformal

structures of quaternionic contact structures [Alt08, Theorem 1]. Conformal holonomy of

this type is characterized by the existence of three parallel complex structures on the trac-

tor bundle that are compatible with the tractor metric and that satisfy the commutation

relations of the imaginary quaternions i, j, and k. These relations are preserved by parallel

extension, and so one may formulate the corresponding extension problem for producing

ambient metrics with holonomy contained in Sp(p4 ,
q
4); manifolds with such holonomy are

called hyper-Kähler manifolds.

The cases discussed so far in fact already account for most of the groups on Berger’s

List that can occur as the holonomy of an ambient metric: If a Kähler manifold, that is,

a manifold with holonomy contained in U(p2 ,
q
2), is Ricci-flat, its canonical line bundle is

flat, and thus its structure group can be reduced to a subgroup of SL(n2 ,C), n = p+ q. So,

any Ricci-flat (possibly generalized) ambient manifold with holonomy contained in U(p2 ,
q
2)

in fact has holonomy contained in U(p2 ,
q
2) ∩ SL(n2 ,C) = SU(p2 ,

q
2) (also see [Nur08a]), and

thus Čap and Gover’s characterization applies. Likewise, if a quaternion-Kähler metric,

that is, a metric with holonomy contained in Sp(p4 ,
q
4) · Sp(1), is Ricci-flat, its holonomy is

actually contained in Sp(p4 ,
q
4), and so Alt’s analogous results apply to any suitably Ricci-

flat (possibly generalized) ambient metric with such holonomy. So, the above considerations

together account for all of the holonomy groups on Berger’s list that can occur in indefinite

signature except SO(n,C) and GC
2 .
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partielles du seconde ordre. Ann. Sci. ‘Ecole Normale Sup., 27:901–912, 1910.
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[ČG10] A. Čap and R. Gover. A holonomy characterization of Fefferman spaces. Annals
of Global Analysis and Geometry, 38(4):399–412, 2010. ESI preprint 1875.
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Appendix A

A.1 Nurowski’s formula for a representative of the induced conformal class

Nurowski showed that for a function F for which Fqq 6= 0, the generic 2-plane field DF =

span{∂q, D} induces a conformal class cF containing the representative

gF := [(DFqq)
2F 2

qq + 6(DFq)(DFqqq)F
2
qq − 6(DFqqq)FpF

2
qq − 3(D2Fqq)F

3
qq + 9(DFqp)F

3
qq

− 9FppF
3
qq + 9(DFqz)FqF

3
qq − 18FpzFqF

3
qq + 3(DFz)F

4
qq − 6(DFq)F

2
qqFqqp

+ 6FpF
2
qqFqqp − 8(DFq)(DFqq)FqqFqqq + 8(DFqq)FpFqqFqqq

+ 3(D2Fq)F
2
qqFqqq − 3(DFp)F

2
qqFqqq − 3(DFz)FqF

2
qqFqqq + 4(DFq)

2F 2
qqq

− 8(DFq)FpF
2
qqq − 3(DFq)

2FqqFqqqq + 4F 2
pF

2
qqq + 6(DFq)FpFqqFqqqq

− 3F 2
pFqqFqqqq − 6(DFq)FqF

2
qqFqqz + 6FpFqF

2
qqFqqz − 3(DFq)F

3
qqFqz

+ 12FpF
3
qqFqz + 3F 2

qqFqqqFy − 6(DFqqq)FqF
2
qqFz + 4(DFqq)F

3
qqFz

+ 6FqF
2
qqFqqpFz + 8(DFqq)FqFqqFqqqFz − 4(DFq)F

2
qqFqqqFz − 9FqpF

3
qqFz

+ FpF
2
qqFqqqFz − 8(DFq)FqF

2
qqqFz + 8FpFqF

2
qqqFz + 6(DFq)FqFqqFqqqqFz

− 6FpFqFqqFqqqqFz + 18F 3
qqFqy + 6F 2

q F
2
qqFqqzFz + 3FqF

3
qqFqzFz − 2F 4

qqF
2
z

+ FqF
2
qqFqqqF

2
z + 4F 2

q F
2
qqqF

2
z − 3F 2

q FqqFqqqqF
2
z − 9F 2

q F
3
qqFzz](ω̃

1)2

+ [6(DFqqq)F
2
qq − 6F 2

qqFqqp − 8(DFqq)FqqFqqq + 8(DFq)F
2
qqq − 8FpF

2
qqq

− 6(DFq)FqqFqqqq + 6FpFqqFqqqq − 6FqF
2
qqFqqz + 6F 3

qqFqz + 2F 2
qqFqqqFz

− 8FqF
2
qqqFz + 6FqFqqFqqqqFz]ω̃

1ω̃2 + [10(DFqq)F
3
qq − 10(DFq)F

2
qqFqqq

+ 10FpF
2
qqFqqq − 10F 4

qqFz + 10FqF
2
qqFqqqFz]ω̃

1ω̃3 + 30F 4
qqω̃

1ω̃4

+ [30(DFq)F
3
qq − 30FpF

3
qq − 30FqF

3
qqFz]ω̃

1ω̃5 + [4F 2
qqq − 3FqqFqqqq](ω̃

2)2

− 10F 2
qqFqqqω̃

2ω̃3 + 30F 3
qqω̃

2ω̃5 − 20F 4
qq(ω̃

3)2, (A.1)
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where the coframe (ω̃a) is defined by

ω̃1 := dy − p dx

ω̃2 := (dz − F dx)− Fq(dp− q dx)

ω̃3 := dp− q dx

ω̃4 := dq

ω̃5 := dx.

This coframe is adapted to DF in the sense that (θ̄a) defined in Subsection 1.5.1 is, namely

that ker{ω̃1, ω̃2, ω̃3} = D and ker{ω̃1, ω̃2} = D⊥. As in Subsection 1.5.2, D denotes

D := ∂x + p∂y + q∂p + F∂z.

A.2 Tensorial data for Leistner and Nurowski’s examples

We give here some tensorial data collected by Leistner and Nurowski for the class of examples

studied in [LN10] and recorded here in Example 1.6.13; this data was reported in the

appendix of [LN10] and is used here in the proof of Theorem 3.1.7.

For arbitrary parameters a = (a0, . . . , a6) ∈ R7 and b ∈ R, define F [a, b] ∈ C∞(R5) by

F [a, b](x, y, p, q, z) = q2 + a0 + a1p+ a2p
2 + a3p

3 + a4p
4 + a5p

5 + a6p
6 + bz.

Any 2-plane field DF [a,b] ⊂ TR5 is generic, and so it defines a conformal class cF [a,b] (see

Subsection 1.5.3) containing the representative gF [a,b] (A.1).

Define

A1 := 1
21/3 (a1 + 2a2p+ 3a3p

2 + 4a4p
3 + 5a5p

4 + 6a6p
5 + 2bq)

A2 := 1
45·22/3 (9a2 + 27a3p+ 54a4p

2 + 90a5p
3 + 135a6p

4 + 2b2)

A3 := 9
20·22/3 (a3 + 4a4p+ 10a5p

2 + 20a6p
3)

A4 := 9
10(a4 + 5a5p+ 15a6p

2)

A5 := 27
4·21/3 (a5 + 6a6p).
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Then, the Weyl tensor Wabcd of the representative e−
4b
3 xgF [a,b] ∈ cF [a,b] is given in a

suitable coframe (θ̂a) by

W1214 = −A4

W1313 = −2A4

W1314 = 24/3

31/2 (3 · 21/3A4q −A3b)

W1414 = 1
3(27A2

2 − 12 · 21/3A1A3 − 6 · 22/3A2b
2 + 40A3bq − 24 · 21/3A4q

2)

W1415 = A3

W1424 = A3

W1524 = A3,

and all components not determined by these by symmetry are zero. The Cotton tensor Cabc

of e−
4b
3 xgF [a,b] is given in the coframe (θ̂a) by

C113 = − 1
31/2A5

C114 = 21/3

3 (A4b+ 24/3A5q)

C314 = − 1
31/2A4

C413 = − 1
31/2A4

C414 = 22/3

3 A4q,

where again all components not determined by these by symmetry are zero.
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